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This thesis presents two mathematical models which are used to simulate large gas
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Chapter 1

Introduction

This PhD project originated as a collaboration between BG plc (formerly part of
British Gas) and Heriot-Watt University under the EPSRC’s CASE scheme.

The aim was to investigate methods to combine different numerical methods for
gas dynamics in large pipeline networks. This chapter begins with a general discus-
sion of the gas industry, the role played by Transco, the pipeline transportation unit
of BG, and their need for accurate numerical simulation of the gas transmission sys-
tem. Chapter 2 surveys various mathematical models for gas flow in pipes, including
the empirical corrections that are needed in practice. It focuses on two models which
are applicable in very different circumstances. The first, known as the hyperbolic
model, is essentially the Euler equations augmented by friction and heat transfer
terms. It is suitable for the modelling of rapid changes such as those that occur at
a pipe-break, but is too expensive to be used on the entire network. The second,
known as the parabolic model, is a simplified set of equations which is cheaper to
solve, but only accurate when changes are occurring over much longer timescales.
Each model then has a chapter devoted to it, describing the properties and pecu-
liarities of the equations and some of the numerical methods that may be employed
in their solution. Chapter 5 examines the problem of combining the two models,

and their numerical schemes, on a single network. The idea is to use the expensive
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hyperbolic method only where accuracy is required, using the cheaper parabolic
method elsewhere. The problem is complicated by the need to use much smaller
timesteps for the hyperbolic method. Up to this point only linear networks, that is
straight pipelines, are considered. The additional difficulties in branching networks
are examined in Chapter 6. Finally, Chapter 7 concludes the thesis with proposals
to implement the methods in practice, further work, and other applications.
Chapters 1 - 4 introduce the problem, models and numerical schemes and review
the literature. New material is also presented in these chapters, in particular the
cell-edge boundary conditions in Section 3.4.2, the asymptotics in Section 4.1 and
the implementation of the temperature variation in Section 4.3.2. Chapters 5 and 6
contain most of the original work with some analysis and testing of several interfac-
ing methods and a new way of applying boundary conditions at junctions for the

hyperbolic equations.

1.1 The Gas Industry

World energy consumption is rising at a rapid rate, as Figure 1.1.1 shows, almost
doubling between 1970 and 1995. Almost all of this energy is provided by fossil fuels,
and the fraction of this supplied as natural gas is becoming increasingly important.

The increase in energy consumption can be attributed to the massive growth
in the number of cars, the growth in air travel, and the rising use of energy by
the emerging market economies (EMEs). Currently the average US citizen uses the
energy equivalent of 7.7 tonnes of oil per annum compared to a world average of 1.5
tonnes [Com93] so it is likely that this trend will continue in the future as the EMEs
catch up with the industrialised nations. Although non-fossil fuel consumption has
risen considerably since 1950, oil, gas and coal still provide most of our energy,
as the chart in Figure 1.1.2 shows. Gas is starting to replace oil in the industrial

and domestic sectors and is beginning to be seen as an environmentally preferable
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World Energy Consumption

Million tonnes oil aquivalent

source: EP Review

Figure 1.1.1: Reproduced by permission of Edinburgh Petroleum Services Ltd.

alternative to oil, as oil was to coal in the 1950s. In Britain, a new generation of
power stations is becoming more common, which use natural gas as the primary
fuel. In addition, gas-fired CHP (Combined Heat and Power) units and bus and
taxi fleets running on Natural Gas are increasing in popularity.

The other major influence on the increased use of gas is the change in the gas
markets. While oil is a globally traded commodity, transported around the world
in tankers, gas has traditionally been confined to regions where it is produced. The
transportation of gas requires either the building of an expensive pipeline or its
liquification into liquid natural gas which is also very costly. However, international
gas transmission networks such as the US and Canada grid system, the Siberia to
Western Europe line and the Euroconnector are now becoming available. This will
give gas producers access to previously untapped markets and influence the way gas
is managed and the price at which it is sold.

The increasing importance of natural gas is reflected in the chart of proven
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Figure 1.1.2: Reproduced by permission of Edinburgh Petroleum Services Ltd.

reserves in Figure 1.1.3. For example, estimates of UK Continental Shelf reserves
(UKCS) have increased every year, doubling between 1980 and 1995. Figure 1.1.4
shows the locations of the known gas reserves. As can be seen, the former Soviet
Union (FSU) holds the largest share, equivalent to about 70 years of production.
By contrast, the USA while currently producing a similar amount to the FSU, has
reserves only for a further 8.8 years. The UK produces about 3% of the world’s gas,
and imports slightly more.

Assuming a price of $2.50/Mscf then there remains about $12,400 billion to be

extracted worldwide (compared with about $18,300 billion worth of oil.)
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Figure 1.1.3: Reproduced by permission of Edinburgh Petroleum Services Ltd.

1.2 The Gas Industry in Britain

1.2.1 History

Britain’s energy sources have changed dramatically over the last 40 years. In 1950
90% of the country’s primary energy came from coal, which included the artificially
manufactured ‘town gas’ piped in small local networks. By the mid-sixties oil had
gained a 40% share of the market and it was at this time that there was the first
hint of the vast hydrocarbon wealth under the North Sea. In the Netherlands the
vast Groningen gas field had been discovered, and the similar geology of the North
Sea led oil companies to prospect for oil off-shore. The first commercial discovery
was the West Sole gas field which was found by the rig “Sea Gem” for BP in 1965.
This was soon followed by the discovery of Leman, Indefatigable and Hewitt and
within 10 years natural gas provided 25% of Britain’s primary energy.

Unlike oil, all of the gas was controlled by a single body, the British Gas Council,
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Figure 1.1.4: Reproduced by permission of Edinburgh Petroleum Services Ltd.

the forerunner of British Gas. This organisation was responsible for marketing the
new fuel in the UK and constructing the pipeline network required to deliver it.

Although demand for both oil and gas is seasonal, the extra stages such as
refining between the supplier and the user of oil iron out some of the fluctuations.
Gas on the other hand is produced as it is required, with the off-shore platforms in
effect acting as taps. It therefore requires a greater degree of control to cope with
the huge variations in demand between summer and winter days.

The complication of the gas market in the UK has increased in recent years due
to deregulation (see [Upt96]). This process began in 1986 with the privatisation of
British Gas and has continued with the introduction of competition. Customers in
the South West of England were allowed to choose their gas supplier from 1996 and
this will be extended to the remainder of the country in the next few years. British
Gas has now divided into two separate companies: Centrica, which competes with

other gas suppliers, and BG plc which owns and operates the UK pipeline and
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storage system through its subsidiary, Transco. Another important factor will be
the opening of the Interconnector from Bacton to Zeebrugge in 1998 which will link
the UK gas market with that of continental Europe. All of these changes make the

operating of the pipeline network a more complex business.

1.2.2 The National Transmission System

Transco owns and operates the pipeline system and the associated storage facilities
in the UK. This includes the National Transmission System (NTS), shown in Figure
1.2.1, which is the high pressure network which transports gas for around 40 shippers.
The NTS transports gas from the six shore terminals at a speed of around 25 mph
and a pressure of between 40 and 75 bar. It consists of approximately 6,000 km of
pipeline of between 500 mm and 1,200 mm in diameter. The pressure is maintained
by about 20 compressor stations, which are industrial versions of aero engines such
as the 33,000 hp Rolls Royce RB211, powered by natural gas taken from the network.

As well as the pipe network Transco operates gas storage facilities such as

e gas holders (>500, total 27.5 million cubic metres)
e salt cavities (Hornsea, East Yorkshire 189 million cubic metres)
e Liquid Natural Gas (5 sites in the UK, each 25 million cubic metres).

The largest storage site is the Rough gas field, 29 kms off the Yorkshire coastline.
This is a partially depleted gas field which is now used to store up to 2.8 billion
cubic metres at pressures up to 205 bar. Additionally, the pipelines themselves can
be used for storage, known as linepack. At certain times of the day, when demand is
high, the pressure can be allowed to drop as linepack is used, and replenished when
demand is low.

The storage facilities help smooth the extreme fluctuations in demand for gas.
On average, the daily demand is about 200 million cubic metres, but it reached a

record 378 million cubic metres on one day in February 1996.

7
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Figure 1.2.1: Key for the United Kingdom NTS, shown overleaf (reproduced by
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The pipes are connected to sources, demands, machines and each other at nodes.
Machines such as valves and compressors may be modelled by applying boundary
conditions at the nodes. However, in this thesis we are only concerned with the pipe

network itself.

1.2.3 The importance of simulation

The highly dynamic nature of gas supply and demand means that high quality simu-
lation is essential. Simulation over long timescales is needed for forecasting potential
shortages in the system and to make plans to deal with unexpected or expected dis-
ruption (e.g. maintenance) to the network. Accurate simulation over shorter times
could yield better detection of leaks and other potential hazards such as compressor
shutdowns. Pipe leakages and the unnecessary operation of compressor stations will
clearly have a bearing on the efficiency of the network. Furthermore, in the new
climate of competition, accurate modelling is needed to predict the operation of the
network under greatly varying conditions caused by the unpredictable behaviour of

the transportation requirements of shippers.

1.3 Summary

Natural gas will be an important fuel over the next decades.

A changing market increases the necessity for accurate mathematical models

and numerical methods.

This thesis discusses two different models with different characteristics.

We investigate how to combine them on linear and branching networks.

10



Chapter 2

Mathematical models for gas flow

in pipes

This chapter surveys some of the equations that have been used to model time-
dependent flow in gas networks. Although numerical methods will not be described
in detail until Chapter 3 a brief mention will also be made of some of the methods
of solution. An excellent introduction to the subject is the classic Goldwater and
Fincham paper [GF81] which will be referred to frequently throughout this chapter.

The usual starting point is the one-dimensional Euler equations,

0(4p) | 9(Apu)
ot Oz
O(Apu)  O(Apu?) op _
ot T or T4
O(AE) N O(A(E +p)u) 0
ot oz 7

=0

which describe the conservation of mass, momentum and energy. Their derivation
is omitted since it may be found in any fluid dynamics textbook. Refer to Table
2.0.1 for definitions of the notation.

Goldwater and Fincham discuss the validity of a one-dimensional model and some
modifications that may be used for turbulent flow. Since a typical pipe has a length

of at least 1,000 times its diameter a one-dimensional model is usually justified,

11



Chapter 2. Mathematical models for gas flow in pipes

p pressure A pipe area p density

u gas speed FE energy density ¢ time

Table 2.0.1: Notation

with quantities considered to be averages across the pipe cross section. The size
of the network generally prohibits a multidimensional model and furthermore the
limited accuracy with which measurements can be made does not justify the extra
complexity.

In the form given above, the time derivatives are of the conserved quantities,
while the spatial derivatives are of the fluxes*. Thus Ap is the mass per unit length,
Apu the momentum per unit length and AFE the energy per unit length. The Euler
equations are closed by an algebraic relation between E, p, p, u. This relation
depends on the properties of the gas and is considered further in Section 2.2. The

simplest is the ideal gas equation,

1 p
E = —pu’
2pu +7_1,

which is used throughout this thesis.

In reality momentum and energy are not strictly conserved. In long pipelines
there are significant frictional losses and often this is the dominating factor. Other
important influences are the conduction of heat between the gas and its surroundings
and the change in potential energy of gas in inclined pipes. This latter effect is
easily dealt with by including source terms in the momentum and energy equations,

as shown by Goldwater and Fincham.

*It is worth noting that the momentum flux is only an exact derivative if the pipe area A is

constant. If the pressure term is written

dp O(Ap) 0A
Aax = "oz Yoz

then the variation in A appears as a source term in the momentum equation, in other words
momentum is lost or gained from the pipe if the area changes. In extreme cases such as an abrupt

change in pipe diameter, a one-dimensional model may no longer be appropriate.

12



Chapter 2. Mathematical models for gas flow in pipes

The friction and heat conduction source terms are more difficult since they re-
quire empirical models of the physics. The frictional losses are modelled by the

inclusion of a source term in the momentum equation,

2
a(Apu)+a(Apu)+Aa—p+Cr=0,

ot oz oz

where C' is the circumference of the pipe and 7 is the average wall stress. The wall
stress usually takes the form,
1
T = = fpulul,
5 fpulyl
where f is the Fanning friction factor discussed in detail in Section 2.4.2. Heat

conduction is similarly modelled by a source term in the energy equation,

O(AE) _OA(E +pJu)
o T e %

where () is the rate of heat transfer per unit length of pipe. Since most pipes are

circular and of constant area we may divide through by A and write C/A =4/D to

give,
dp 0Oq
2 0
9  9d/p)  Op  dld _ (2.0.2)

ot oz oz

OE  O((E +p)a/p)
ot ox

= /A, (2.0.3)

where 1 % 2/D and q = pu is defined by Landau and Lifschitz [LL89] as the mass
flux density and has units of kg/s/m?. An engineer would be more interested in the

mass flow rate,
Qmass = p’LLA = qA [kg/S],
the molar flow rate,

puA _ Qmass
MW MW

"For noncircular pipes and annuli this is used to define the hydraulic diameter D.

Qmolar =

[kmol/s],

13



Chapter 2. Mathematical models for gas flow in pipes

or the volumetric flow rate,

836

©= 3600 x 24

————————Qmolar [standard cubic feet per day (SCFD)],

but we work with ¢ since it eliminates the area from all but the source terms.
Equations (2.0.1) to (2.0.3) are a system of nonlinear hyperbolic conservations

laws. Numerical methods for their solution are described in Chapter 3.

2.1 Model simplifications

The heat transfer term (2 is dependent on the gas temperature, the external tem-
perature and the conductivity of the pipe and surrounding soil (if any). Two semi-
empirical models for 2 are described in Section 2.4.3. However, often the problem
of interest falls into one of two extreme cases. If we are simulating an event such
as a pipe-break which takes place over a time-scale of seconds then the changes are
too rapid for heat conduction to play a significant réle and we may safely neglect it
and set {2 = 0. The opposite situation is where changes take place so slowly that
heat conduction is sufficient to keep the gas at ambient temperature, that is, the gas
is isothermal. This vastly simplifies the problem since the energy equation is now
redundant (except for calculating (2, the actual magnitude of the heat transfer). We
may also eliminate p from the equations by substituting the ideal gas equation of

state (see Section 2.2),
1

p= ﬁp,

into the mass and momentum equations to give,

1 0p Oq
7ot "o =" (21.1)
dq 9(¢*/p) O . prdd
i gl 9.1.2
Y + RT————= 5 + — 8:5 uR ) =0, ( )

since T is constant.

14



Chapter 2. Mathematical models for gas flow in pipes

These equations are also hyperbolic and may be solved by the standard numerical
methods described in the Chapter 3. Goldwater and Fincham give two methods, a
box-like scheme and the method of characteristics.

Many authors neglect terms in the momentum equation to make the problem
more tractable. To compare the relative importance of the terms we nondimension-

alise the equations (2.1.1) and (2.1.2) to give,

ag—lz + Z_:Z =0
6%4-2%4-2—24-1/%:0,
where
PL _ L __ 2fq;LRT

o= , €= , V=—n
qORTtO Poto P02D

and as usual we have substituted p — Fyp, + — Lx etc. If we are simulating the
daily changes of a large gas network then it is reasonable to consider a time-scale
of hours and use the following typical values Py = 70 x 10° Pa, g = 500kg/m?/s,
L = 50,000m, R = 481J/kg/K, T = 280K, t, = 3600s, f = 0.002, D = 1lm,
implying the following values o = 1.44,¢ = 9.9 x 1074, = 1.37 x 10~L.

Over this time-scale the first two “inertia” terms of the momentum equation are
sufficiently small to be neglected.

Often only the nonlinear inertia term (¢?/p), is dropped and the resulting (di-

mensional) equations,

10p 0g _
RT Ot 0z
0g  Op , pralal _

— 4+ = RT
3t+3x+'u P

0

0,

remain hyperbolic. Furthermore, their characteristics are now straight lines and
so the equations may be solved easily by the method of characteristics as shown

by Stoner [Sto69]. Kiuchi [Kiu94| also solves these equations, but by the implicit

Crank-Nicolson method. He also demonstrates a technique for solving branched

15



Chapter 2. Mathematical models for gas flow in pipes

networks as well as simple linear pipelines. Both authors include real gas effects in
their models.
In this thesis we solve the equations obtained by neglecting both inertia terms,

1 0p 0g_
RT Ot 0z
o —i—uRT% =0,

(2.1.3)

oz

or on rewriting the momentum equation,

19(p%)
2 Oz

+ uRTqlg| = 0. (2.1.4)

This quasi-steady approximation is referred to as the parabolic equations in the
remainder of the thesis.

Returning to the full equations (2.0.1) to (2.0.3), Lang [Lan91] investigates the
application of a spectral method to ideal gas flow following a pipe rupture. Since this
is a short time-scale phenomenon he uses the adiabatic {2 = 0 assumption. Issa and
Spalding [IS72] go two steps further by including real gas effects, and by modelling
the heat flow in terms of the Stanton number (refer to Section 2.4.3). They solve the
equations by the method of characteristics and investigate the effect that varying
the Stanton number has on the solution. Heat conduction is also included in the
equations solved by van Deen and Reintsema [vDR83] by an interesting approach
which attempts to take into account the heat capacity of the pipe itself. Finally,
Thorley and Tiley [TT87] review the numerical methods commonly used to simulate
gas networks and give a very good discussion of issues such as the validity of the

friction and heat transfer terms.

2.2 Equations of state

The Euler equations are closed by two algebraic relationships describing the variation

of pressure,
p=pp,T),

16



Chapter 2. Mathematical models for gas flow in pipes

and the internal energy,

e=e(p,T),

with density and temperature. Once the internal energy is known the total energy

density E may be found by adding the kinetic energy,

1
E = pe + §pu2. (2.2.1)

The first relation is known as an equation of state (EOS) and the simplest is a

combination of Charles’ and Boyle’s Laws, the ideal gas law,
pV =nR'T,

where V' is the volume, n the number of moles of gas and R* the gas constant whose
value is given in appendix A.

We require the EOS to be expressed in terms of pressure, density and tempera-
ture. The mass M of n moles of gas is n Xx MW where MW is the mean molecular

weight. Since density p = M/V we have,

_ ponR*T _ pR*T
M MW"

Defining a reduced gas constant R = R*/MW we have the equation which is used

throughout this thesis,
p = pRT. (2.2.2)

The internal energy of the gas may be found from

T
ez/ ¢, dT,
0

where ¢, is the specific heat capacity at constant volume and is a function of tem-
perature and pressure. The simplest model assumes that ¢, is constant, which is a

reasonable assumption over a limited temperature range, to give,

e =c¢,T. (2.2.3)

17



Chapter 2. Mathematical models for gas flow in pipes

Equations (2.2.3), (2.2.2) and (2.2.1) may then be combined to give the energy

density as a function of pressure, density and speed,

1 CyP
E = —pu? 4+ 22
2pu+R,

but from thermodynamics, for an ideal gas (see Zemansky [Zem68]) we have
R=c, —c,.

Therefore, defining the ratio of specific heats « def ¢p/ ¢y We have,

1 p
E=_pu?
2pu +7_1,

as used at the beginning of the chapter.

2.3 Alternative forms of the energy equation

Several alternative forms of the energy equation (2.0.3) are required in this the-
sis. Their derivations are not particularly interesting but for completeness they are
included here.

Defining the specific enthalpy h e+ p/p, the energy equation (2.0.3) may be

written,

Op(h +u*/2) —p) | O(up(h +v’/2))
ot ox

= /4,

or,

dp  O(pu) O(h + u?/2) O(h+wu?/2) Op
2 _ AL —_ — =
(h +u®/2) (81& t—, ) TP T + pu 5 5 Q/A.

Using the total derivative notation,

D 0 0

Dt~ o “os
and the continuity equation (2.0.1) to eliminate the first term this simplifies to,

Dh Du 0Op
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This may be written in terms of temperature and pressure by using the thermody-

namic relation,

oh oh

= —dl'+ —
dh aTd + apdp
= ¢, dT — cpfidp,

where the specific heat at constant pressure ¢, © (on/ dT), and the Joule-Thompson

def

coefficient 1 = (0T /0p)y. Substituting for h gives,

DT A Op . Op Du
PC;DFi5 -1+ pcpﬂ)a - pcpﬂ“% + puﬁ = Q/A. (2.3.1)

For slow transients the inertia term wDu/Dt is often neglected with the same jus-
tification as in the parabolic momentum equation (2.1.4). This form of the energy
equation is used in Section 4.3.1 to include temperature variation in the parabolic
model. For the ideal gases which we consider in this thesis the Joule-Thompson

coefficient /i = 0 reducing equation (2.3.1) to,

op Du

We can also eliminate Du/Dt by making use of the momentum equation (2.0.2),

which is reduced by the continuity equation (2.0.1) to,

Du 0Op
—_— —_— = 0
PDi + 9 + ppulu| ,

and substituted into equation (2.3.2) to leave,

DT dp 1 8p
Z %P et = Q/A.

This simplifies to,

DT Dp
Py ~ Ty — Mewlul = QYA

On dividing through by pT we get,

DT _ 1 Dp_ QA+ ol
T Dt pT Dt oT ’
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Chapter 2. Mathematical models for gas flow in pipes

and, on using the ideal gas equation of state (2.2.2),

DT _RDp _ Q/A+ ppllu
T Dt pDt oT '

Since this is a perfect derivative we have,

D _ Ds _ Q/A+ ppu?|ul
Ht(cplnT—Rlnp)_Ft_ et :

(2.3.3)

which is the entropy form of the energy equation. The quantity Ds is the change
in specific entropy of the gas. This form will be used in Section 4.3.2 to include
temperature variation in the parabolic equations.

The entropy is often written,

s=c¢,InT — Rlnp + const

= ¢y(yInT — (v — 1) Inp) + const
T
=cyIn ( > + const,
pr!

and again using the ideal equation of state (2.2.2) in the form 7' = p/Rp, it can be

written as
s =rcyln (p%) + const.
See Zemansky [Zem68] for a full discussion of entropy.

If there is no friction and the system is adiabatic then p = Q = 0 and p/p”
is constant along stream lines. This is a common assumption which considerably
simplifies the problem and in some circumstances allows an analytical solution. See
for example Ockendon and Tayler [OT83]. If we assume that the gas is homentropic,
that is the entropy is constant everywhere, then after some manipulation and the
substitution of the sound speed a = \/'M, the mass and momentum equations

may be obtained in characteristic form,

(% F(ut @%) (u . 72_“1> 0. (2.3.4)
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Chapter 2. Mathematical models for gas flow in pipes

This equation states that the Riemann invariants u+2a/(y—1) are constant along
the characteristic curves defined by X = u + a. The assumption that the gas
is isentropic is unrealistic for gas pipelines. However, it is possible to model the
entropy change empirically by replacing the ratio of specific heats v with another
constant k. This “polytropic” model was investigated for British Gas by Emmerson

[Emm90]. The isentropic characteristics defined by equations (2.3.4) and

0s n 0s 0
2 uE =
ot ox
will be used in Chapter 3 to generate numerical boundary conditions.
If the gas is not isentropic then the Euler equations do not possess Riemann

invariants. However, the equations may still be put into characteristic form,

Op ou Op ou 2 Q

4+ pa— +a)|=Fpa—|= —(u= —(r—-1

5 TP T (u+ta) (ax P“3x> putlul — (v £ a)(ppulul) — (v )A,
(2.3.5)

which, together with equation (2.3.3), form a system of coupled ordinary differential
equations. These also will be used to derive numerical boundary conditions in

Chapter 3.

2.4 Including real gas effects

2.4.1 Real gas equations of state

In this thesis the ideal gas EOS has been used to avoid the introduction of extra
complications. However, accurate simulation of gases at high pressure is not pos-
sible without the inclusion of real gas effects. This section briefly outlines how the
methods of later chapters may be adapted to use a nonideal EOS.

The ideal gas law has been very successful at predicting the behaviour of gases at
low pressures and temperatures but can give errors in pressure as large as 500% at

the pressures encountered in the gas industry. In the last 100 years many alternative
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Chapter 2. Mathematical models for gas flow in pipes

equations of state have been proposed to account for the nonideality of a real gas.

They are usually written as a correction to the ideal gas EOS in the form,
pV =z2(p,T)R'T. (2.4.1)

One of the first, and most successful attempts to improve on the ideal gas EOS was

by van der Waals in the late nineteenth century who proposed,

R*T _a
V—-b V2

p:

The constant b models the finite volume of the molecules which becomes more sig-
nificant at low temperatures and high pressures. The second term on the right hand
side compensates for the mutual attraction between the molecules which tends to
reduce the force with which molecules strike the walls of the container, and thus
reduce the pressure. Substituting the van der Waals equation into equation (2.4.1)
results in a cubic equation for the factor z which may be easily solved either directly
or by Newton iteration. The most common EOS in use today, the Soave-Redlich-
Kwong (SRK) and the Peng-Robinson equations, may also be expressed as the roots
of a cubic and there are many standard packages available to calculate z-factors and
other so called Pressure-Volume-Temperature (PVT) information for a given fluid.

Incorporating the z-factor into the parabolic equations (2.1.3), (2.1.4) is quite
straightforward. A z-factor will occur wherever density has been replaced by pres-

sure, for example the momentum equation becomes,

19(p%)
2 Oz

+ pz(p, T)RTq|g| = 0.

The numerical method (4.2.1) and (4.2.2) described in Chapter 4 will solve this
equation with little modification. The extra complication arises in the calculation
of the Jacobian which requires 0z/0p. However this is usually supplied by z-factor
packages and even if not, it is small enough not to have a significant effect if omitted.

Including the z-factor in the hyperbolic scheme is more difficult since Roe’s

scheme (see Section 3.3) requires an approximate Riemann solver. This has not
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Chapter 2. Mathematical models for gas flow in pipes

been found for a general EOS, so an alternative is to ‘freeze’ the z-factor at each

Riemann problem. Given some suitably averaged Z then equation (2.2.1) becomes,

Co 1

E="p+ -pu’.
zrRP T P
If we define ¥ by,
1 Gy
y—1 zR’

then the equations are formally the same as the ideal gas equations, when expressed
in terms of p,q, E. Provided that the averaging of z (or alternatively of 7) is cho-
sen well, then Roe’s scheme should still give a reasonable solution, although the

conservation condition (3.3.11) will no longer be exactly satisfied.

2.4.2 Friction

The derivation of the Euler equations assumes that the fluid is inviscid, that is,
there are no frictional losses. For a long pipeline this is certainly not the case, and
as Section 2.1 showed, frictional effects dominate in certain circumstances. The

frictional losses are usually simulated by a semiempirical term of the form,

__ Jpuly]
2 7

where the dimensionless constant f is known as the Fanning friction factor. Various
formulae are available for the friction factor, a good source is Perry’s Chemical
Engineering Handbook [Gre88]. Two of the most popular for turbulent flow are the
Blasius smooth pipe law,

f=0.079Re™ "%,

where the Reynolds number is,
D
Re =22
7

and p is the viscosity. For rough pipes, the Colebrook equation is often used,

1 e 1256
I B0\ 37D T ReT )
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Chapter 2. Mathematical models for gas flow in pipes

where € is the pipe roughness*.

All of these formulae were developed for steady, isothermal flow and thus cannot
be expected to be accurate for transients. However, in the absence of anything
better, we use them throughout this thesis both for quasi-steady state simulations
and for the rapid transients. According to Stewart [Ste] in commercial situations
where pipes are subject to corrosion, distortion and scaling, the accuracy with which
pressure drops can be predicted is often no better than 25% even for steady flow.
In real simulation software parameters such as the friction factor are “tuned” to
reproduce experimental data in the hope that this will provide a better model for
predictive purposes.

It is possible to model the additional frictional losses incurred at bends and
junctions by increasing the friction factor, or more commonly, replacing a bend with

the equivalent amount of straight pipe.

2.4.3 The heat transfer term

The two extremes of adiabatic {2 = 0 and isothermal flow T" = const are not always

satisfactory. The most common intermediate model is to define the Stanton number

St,
9

St =
npcyuD(Ty, — Tp)’

where T, is the wall temperature and Ty the stagnation temperature of the gas (that
is, the temperature the gas would have if it was brought to rest isentropically).

Rearranging gives the heat conduction as,
Q = mpuc, DSt(T,, — Tp).

The Stanton number may be found from boundary layer theory, or calculated by a
relationship such as,

St(Re™*)(Pr®®) = constant.

*measured to be about 0.1mm by Shell on the high pressure loop at Bacton
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Issa and Spalding [IS72] used a heat transfer term of this form and concluded that
variations in St made such a small difference that it was sensible to keep it constant.

BG use a less empirical model for heat conduction which is based on solving
Laplace’s equation in the soil surrounding the pipe. The resulting heat conduction
term is given by,

Q= 2mk (T, —T)). (2.4.2)

In(h/R+/h2/R2 - 1)

The assumptions underlying this formula are that we have a straight pipe of

length L and radius R aligned along the z-axis and buried at depth A from the
surface given by y = 0. In the soil surrounding the pipe we assume the linear heat

equation,

2 2 2
orT (3 T 0T 0 T) _o (2.4.3)

C—Hr — + +
Pt 822 | By | 022
and that the gas in the pipe is well mixed so that we can assume that the pipe
surface temperature T is a function only of z and ¢. Conservation of energy requires

that the heat transfer term is given by,
Q=¢. —k_—ds. (2.4.4)

If we non-dimensionalise with * — hxz, y = hy, 2 — Lz, T — T,T and t — 7t the

heat equation (2.4.3) becomes,

pIT (T ST\ KOT _
kt Ot ox?2 0y L2 922

We can approximate this by Laplace’s equation if both A2 << L? and pch?/kT <<
1. The former requirement is clearly satisfied since typically L = 50000m and
h = 1m. Soil typically has a density of p = 2050kg/m?, a specific heat capacity
of ¢ = 1840J/kg/K and a conductivity of about k = 0.52J/s/m/K. Therefore the
latter assumption only holds if we are considering a time-scale of £ > 7 x 10% ~ 84

days. This is valid for steady state calculations and in this case we need to solve,

T T _

92z T g =
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Chapter 2. Mathematical models for gas flow in pipes
with the boundary conditions,

T = T,ony=0

T = T, on the pipe surface, the circle (Rcos#, —h + Rsin6).

The method of images may be used to find the solution,

T,—T, 2* + (y — a)?
T(z,y) =T, + 2 P 1n ,
(z,y) =T, In (h;a) <x2+ (y + a)?
where a« = —+/h? — R?. To find Q2 we want to calculate the integral (2.4.4) but this
is equivalent to integrating around any closed curve enclosing only the singularity

at (0,a). If we choose a circle of radius r < |a| centred on (0,a) we find (since the

denominator in the logarithm makes no contribution to the integral),

oT
Q = 7{— 9
kar
— 2w
=yl h T”/ 2, 46
ln(%) o T
In (752)
Amk(T, — T,)

In(h/R+/h2/R2 —1) —In(h/R — \/hR2/R2 — 1)’

and on simplifying the logarithm by multiplying by the conjugate of the denominator

we have,
Q- 2nk(T, — T,)

In(h/R+/h2/R2—1)

2.5 Summary of model assumptions

e One-dimensional, turbulent gas.

e Circular, horizontal pipes.

e Ideal, polytropic EOS.

e Friction modelled by steady state friction factors.
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Chapter 2. Mathematical models for gas flow in pipes

e Single phase.

Additional assumptions for the hyperbolic model:

e Adiabatic flow assumed in this thesis, Q = 0.

Additional assumptions for the parabolic model:

e Isothermal flow T =const or adiabatic flow 2 = 0.

e Inertia negligible compared to friction.
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Chapter 3

Numerical solution of the

hyperbolic equations

3.1 Introduction

This chapter describes the numerical method chosen to solve the hyperbolic equa-
tions. It begins with a brief survey of numerical methods for hyperbolic conservation
laws, concentrating on the high resolution finite difference schemes that were devel-
oped in the eighties. This is followed by a detailed description of Roe’s scheme as
applied to the hyperbolic equations. Finally, we describe several means of imple-
menting boundary conditions, including a new method which follows naturally from
Roe’s scheme.

To recapitulate, by the “hyperbolic equations” we mean the one dimensional

Euler equations augmented with a frictional source term,

op Oq
5+ 5, =0 (3.1.1)

dq  0(¢®/p) , Op | dlg| _
T 7o T H , =0 (3.1.2)

OE  O((E+p)g/p) _
=+ o = 0. (3.1.3)

Note that in the remainder of this thesis the heat conduction term 2 has been
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Chapter 3. Numerical solution of the hyperbolic equations

neglected. These equations fall into the category of inhomogeneous hyperbolic con-
servation laws, which take the form

ou  Of(u)
5T g =* (3.1.4)

and arise in areas as diverse as modelling the flow of traffic to describing the flow of
water after a dam break. The vector u represents some conserved quantity, in this
case [p, ¢, E], while f is the corresponding flux. Often the system is written as

ou ou .

T A(u)a =s (3.1.5)

where A is the Jacobian matrix of f with respect to u. For a linear system A is a
constant matrix and f = Au.

Hyperbolic equations have some interesting properties. They describe the trans-
mission of information along curves in « — ¢ space known as characteristics. This
is associated with the propagation of waves at a finite speed. Sometimes the trans-
mitted information can be described by a function of the conserved variables, called
a Riemann invariant, which is constant along a characteristic curve. An example
of such a system is the homentropic Euler equations (2.3.4) of Chapter 2. When
this is not possible the equations can still be recast in characteristic form, that is, a
system of coupled ODEs along the characteristics such as equations (2.3.5).

The most important feature of this type of partial differential equation is that
discontinuities can appear in solutions even with smooth initial data. These dis-
continuities are known as shocks, since they were first studied by aerodynamicists,
and often occur because of some failing of the underlying model. In gas dynamics,
shocks represent narrow zones with steep velocity gradients where viscosity domi-
nates. Since the Euler equations neglect viscosity the zones appear as discontinuities.

An associated aspect of hyperbolic conservation laws is nonuniqueness of solu-
tion, which arises in two ways. Firstly, the PDE itself is derived from an integral
equation describing the conservation of [ udx. However, the same PDE may also be

derived for the conservation of [u?dz, [u®dx etc. These all have identical solutions
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Chapter 3. Numerical solution of the hyperbolic equations

when u is smooth but not when discontinuities are present. Care must be taken
when constructing numerical methods that the correct weak solution, conserving
J udz, is selected. Secondly, valid weak solutions may be constructed which cannot
physically exist. These rarefaction shocks do not exist in nature because viscosity
spreads them into rarefaction waves. In the idealised inviscid model described by
the PDE an entropy condition is imposed to reject such unphysical solutions.

The properties of hyperbolic conservation laws and the role of entropy is discussed
in detail in the classic paper by Lax [Lax73]. For more general information on
characteristics and hyperbolic partial differential equations consult a textbook such
as Kevorkian [Kev90].

The major challenge for numerical methods for conservation laws is to resolve
discontinuities correctly and sharply while giving accurate results on the smooth
parts of the flow. Of the numerical methods available we will pursue finite differ-
ence methods rather than finite volumes or finite elements. In one dimension finite
volume methods and finite difference methods are indistinguishable. We do not con-
sider finite element methods for several reasons. Firstly, they are more difficult to
implement than finite differences. It is also more difficult to introduce ‘upwinding’
into finite elements, which is essential if there is strong advection.*

Furthermore, the aim is to interface the hyperbolic method with that used for
the parabolic equations. The parabolic scheme described in the next chapter is a
finite difference scheme and therefore it is easier conceptually also to use a finite

difference scheme for the hyperbolic equations.

*Although developments such as Streamline Upwind Petrov/Galerkin [HT84] have been suc-

cessful.
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Chapter 3. Numerical solution of the hyperbolic equations
3.2 Finite difference schemes for hyperbolic con-
servation laws

In this section we describe some of the finite difference methods for equation (3.1.4),
neglecting for the moment the source term s which will be discussed in Section 3.3.2.

Having narrowed the choice to finite difference schemes there is still a vast number
available. The first decision is between explicit and implicit schemes. Explicit
schemes are far easier to implement since they do not require the solution of a
system of algebraic equations at each timestep. However, they suffer from a stability
restriction on the timestep, usually that the Courant number A satisfies the CFL

condition (in one dimension),

_|alAt

A Ag

<1 (3.2.1)

where a is the wave speed of largest magnitude. Unlike the stability condition for
parabolic equations, this is not unduly restrictive since we require a reasonably short
timestep to resolve the solution with sufficient accuracy. The stability condition
would be a handicap if we were interested in the steady-state solution or if we
were simulating long timescale phenomena, and in this case an implicit method
would be appropriate (see Kiuchi [Kiu94]). For our problem though we follow the
advice of K.W.Morton [Mor71] - “Implicit and semi-explicit algorithms of the Crank-
Nicholson type should be restricted to use in diffusion equations where an explicit
time differencing would result in a prohibitively small timestep to ensure numerical
stability.”

There has been a huge amount of progress in the last two decades on explicit
finite difference schemes for hyperbolic conservation laws. An excellent introduction
to the subject is the book by Randall LeVeque [LeV90] which also describes the
analytical properties of the equations. It is not possible to go into such detail here

and so this section will be restricted to detailed description of the schemes actually
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used, along with a sketch of their development and references to the appropriate

papers.

Simple schemes

Perhaps the simplest, naive, explicit finite difference scheme to solve the conservation
law (3.1.4) is to use a centred difference for the spatial derivative and a forward

difference for the temporal derivative,

Ut - Up | f(Uz,) - £(UL)

At Az =0

It is well known that this scheme is unconditionally unstable (that is, no matter
how small the timestep is made, the true solution will be swamped by an ever
growing error), and this can be easily proved by the use of Fourier analysis. See
for example Morton and Mayers [MM94]. The scheme can be stabilised, subject to
the CFL condition (3.2.1), simply by replacing U} by (U, + U}, ,)/2 to give the

Lax-Friedrichs scheme,

Ut — (U, +Up,,)/2 + f(Ui) — £(Ui-1)

=0. (3.2.2)

The Lax-Friedrichs scheme is the simplest stable, centred difference scheme and it
requires no knowledge of the underlying equations. However it is only first-order
accurate and is notorious for being very diffusive, that is, it smears discontinuities
such as shocks. A second-order accurate method, which uses the same three-point
stencil (the pattern of points used to calculate a value at the new timestep), is
the famous Lax-Wendroff scheme. Lax-Wendroff, and its two-step equivalents for
nonlinear equations, such as the Richtmyer scheme (see Sod [Sod85]), give excellent
results for smooth solutions but oscillate severely around discontinuities (see the
examples in LeVeque’s book [LeV90]). Such oscillatory behaviour is characteristic
of second-order schemes such as Lax-Wendroff and Beam-Warming (see [RB76]) just

as diffusion is characteristic of first-order schemes such as Lax-Friedrichs.
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Conservation

The numerical schemes described so far have in common the property that they can

be written in conservation form,

U?H — U? + F?+1/2 B F7—1/2
At Az

=0. (3.2.3)

For example, in the case of centred, three-point schemes F;,/, = F(U;, U;14), and

in particular for Lax-Friedrichs (3.2.2),
1
Fiii0= i(f(UZ) +f(Ui)) —

Lax and Wendroff showed in [LW60] that this form is essential if the scheme is to
converge to the correct weak solution and shocks are to move at the correct speed. In
addition a numerical entropy condition is usually imposed to ensure that unphysical

rarefaction shocks are disallowed.

Upwinding for scalar laws

Including some of the physics of the problem into the method often gives better
results than centred schemes.

For a scalar linear conservation law,

ou ou

—+a—=0 3.2.4
ot "o T (3.24)
‘upwinding’, that is taking account of the direction of wave propagation, is straight-
forward since the direction of wave propagation is clear: to the left if @ < 0 and to

the right if @ > 0. A first-order accurate upwind scheme for this equation is,

Ur-Ur,

Uin-l-l_Uin__ CLZT a>0 (325)
At At L A
Ag ’

where the ‘leg’ of the stencil points in the upwind direction. Although it is less
diffusive than Lax-Friedrichs the smearing of discontinuities is still unacceptable for

many problems.
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Upwinding for systems

When dealing with systems of equations rather than scalar conservation laws it is
not straightforward to introduce upwinding to take account of the wave direction.
If the system is linear, then it can be put into characteristic form (see Section 3.1)
simply by multiplying by a matrix constructed from the eigenvectors of A. The
system then decouples into independent scalar PDEs of the form (3.2.4) each of
which can be solved by a scheme such as (3.2.5). When the system is nonlinear then
some form of linearisation is usually done to determine the characteristic directions.
Issa and Spalding [IS72] provide a good example where they cast the equations in
characteristic form and assume that over a single timestep the characteristics are
straight lines. They trace these lines back from a grid point at the advanced timestep
to the intersection with the initial timestep. They then calculate the variables at
these points by linear interpolation between the adjacent grid points and integrate
forward along the characteristics to the new timestep. This characteristic based
method can be shown to be equivalent to first-order upwinding in the case of a
linear system.

Although the method of characteristics is more complicated to implement than
the simple difference schemes of the last section, it includes some of the physics
behind the model and it allows a very natural method of applying boundary condi-
tions, as will be shown in Section 3.4. The disadvantage is that it cannot be put into
the conservation form (3.2.3) and therefore should not be used on problems which
might contain shocks. This is demonstrated by Issa and Spalding’s figures 2 and 3

which clearly show that the shock is misplaced.

Godunov’s method

The dilemma of wanting to have a conservative scheme which includes some form of
upwinding was resolved in an ingenious manner by Godunov [God59]. His revolu-

tionary idea was to abandon the use of a solution at a finite number of points on a
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mesh. Instead, he replaces the initial solution by a simplified approximation, defined
everywhere, though not necessarily continuous. The conservation law is then solved
exactly for a short timestep, which is a practical proposition with the simplified data.
At the end of the timestep the solution is projected back to an approximation, and
the process begins again.

Godunov chose the most simple approximation possible. The computational
domain is divided into a sequence of cells, rather than points, and the approximation
is constant within each one. At the cell edges the approximation is discontinuous and
it is here that the computation is required. Waves are generated at the cell-edges
which propagate into the adjacent cells. Provided the time step is not too long,
waves from neighbouring cell-edges will not have time to interact and each cell-edge
can be considered in isolation. The minimum time for the waves to interact is the

time taken for a wave to cover half a cell,

la|At
Azx

<

The problem therefore reduces to solving a Riemann problem at each cell edge, that

is, solve the conservation law (3.1.4) with the initial conditions,

y <0
u(z,0) =
u., = >0.

at each cell edge.

The conservation law provides a solution which, by definition, is conservative.
This is followed by the projection step, replacing the calculated solution with a
piecewise constant approximation chosen to ensure conservation. Hence the overall
method is conservative, and provided that an entropy condition is satisfied we can be
sure that the approximation will converge to the correct weak solution. In practice,
these stages can be combined into a single step as will be shown in detail in Section
3.3 and the entire scheme written in conservative form (3.2.3).

There are two disadvantages to Godunov’s original scheme. Firstly, it is still only

first-order accurate. This problem is addressed in Section 3.2. Secondly, the Euler
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equations are so complicated that even solving a Riemann problem is a nontrivial
task and requires iteration (see Holt [Hol77] for a detailed description).

It was pointed out by Roe [Roe81] that since the solution to the Riemann
problem is re-averaged at each timestep information is inevitably lost, and it is
questionable whether it is worth solving the conservation law exactly. He suggested
that there would be little loss of accuracy if the conservation law was replaced
by one with similar properties which is easier to solve. This led to a category of
methods based on Godunov’s but using approximate Riemann solvers. Roe’s own
idea was to solve the linear system obtained by replacing A(u) in equation (3.1.5)
with a constant matrix A. This idea is discussed in detail in Section 3.3. Harten et
al [HLvL83] propose a class of simpler approximate Riemann solvers, the simplest
of which approximates the solution by two constant states separated by a single
intermediate state. They also specify a number of conditions to ensure that the
solver is conservative and satisfies an entropy condition. Their solver was used by
Einfeldt [Ein88] to solve the Euler equations, with a slight modification to improve

the resolution of contact discontinuities.

Second-order accuracy

Traditionally, first-order schemes have been too diffusive for practical use while
second-order schemes suffered from oscillations, and sometimes instability, at dis-
continuities.

Warming and Beam [RB76] noticed that the oscillations tend to follow the discon-
tinuity for the Lax-Wendroff scheme but precede it for the Beam-Warming scheme.
They then proposed a way of switching between the schemes so that Beam-Warming
was used on one side of the shock and Lax-Wendroff on the other, significantly im-
proving the solution. This idea of automatically switching scheme near a disconti-
nuity has been used by many authors to develop so-called high resolution schemes.

The problem of achieving second-order accuracy while avoiding oscillations around
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shocks was first attacked with some success by Boris and Book [BB73]. Their ‘flux-
corrected transport’ algorithm was a two stage process which calculated the diffusion
caused by the basic first-order scheme and subtracted it from the solution. How-
ever, they recognised that too much ‘correction’ would induce oscillations and so the
backwards diffusion was limited to ensure that monotonic profiles remained mono-
tonic. This was the forerunner of flux-limited methods which decompose the flux

term into its first and second-order components,
Fiov2 = Fz'1—1/2 + (Fi2—1/2 - Fz'1—1/2)7

where F'! is a first-order flux such as Lax-Friedrichs and F? is a second-order flux

such as Lax-Wendroff. The correction term is then restricted by a limiter function ®,
Fio12= Fil—1/2 + (Fz2—1/2 - Fil—1/2)@-

The limiter is a function of the slope of the solution, switching on (i.e. becoming
zero) near steep gradients to switch to first order, and remaining close to unity on
smooth parts of the solution to ensure that solver is second-order accurate where
possible. Sweby [Swe85] gives some example solutions of Burger’s equation compar-
ing a wide range of limiter functions.

In a parallel development in the seventies van Leer investigated several ways of
generating a second-order method in a series of papers searching for “the ultimate
conservative difference scheme” (a quest which Leonard claims to have completed
with his ULTIMATE scheme [Leo91]). In the second paper of the series [vL74] van
Leer generalised Fromm’s scheme, itself an arithmetic average of the Lax-Wendroff
and Beam-Warming schemes. He used a different average based on the slope of the
solution, mirroring flux limiters. By the fourth instalment [vL77] van Leer decided
that the way forward lay with Godunov’s approach. He showed that a second-
order method could be generated by replacing the piecewise constant data used by
Godunov by a piecewise linear or higher order approximation. The slopes were

generated in a variety of ways and needed to be limited to ensure monotonicity of
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the solution. The final paper of the series [vL79] applied these ideas to the Euler
equations in Lagrangian form and produced his famous ‘MUSCL’ scheme.

Many authors have extended this ‘slope-limiter’ approach such as Goodman and
LeVeque [GL88| who solved a scalar conservation law by using a piecewise linear
approximation to the flux. Another step forward came with Woodward and Collela’s
piecewise parabolic method [CW84]. LeVeque’s 1990 book [LeV90] shows how flux
and slope limiters are equivalent for linear systems.

The goal of oscillation-free solutions was formalised by Harten [Har83a] with
the concept of Total Variation Diminishing (TVD) methods which ensure that the

variation

J2
Z |uj — wjt1]

Jj=an

will not increase. He showed how to construct second-order TVD schemes by solving
a first-order scheme’s modified equation. In a subsequent paper [Har84] Harten
showed that a numerical method in conservation form which is TVD and satisfies
an entropy inequality will converge to the unique entropy solution of the conservation
law.

Second-order TVD schemes are constructed to ensure that scalar conservation
laws (or linear systems) do not generate spurious oscillations and the theory does not
carry across to nonlinear systems. However, the methods often give excellent results
when extended to systems such as the Euler equations. One popular technique,
which was used by Harten, is to use Roe’s linearisation to apply the scheme ‘scalarly’
to each characteristic field. See Roe and Baines [RB82| for more information on this
subject.

In 1984 Osher [OC84] introduced a class of ‘E-schemes’ which are not only TVD
but converge to the unique entropy condition. In the same year Sweby [Swe84]
established the conditions on flux limiters to ensure that the scheme is TVD.

A disadvantage of TVD schemes is that they degenerate to first-order at extrema

of the solution. This problem has been tackled by several authors such as Harten
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and Osher [HO87], and more recently Huynh [Huy95], who relaxed the criterion
of Total Variation Diminishing to forbidding the creation of new extrema in the
solution.

There are many other finite-difference methods which do not fall into the cate-
gories described above. An interesting example is Boltzmann- type schemes. These
begin with a particle based description of the fluid, it can be shown that the Eu-
ler equations for an ideal monatomic gas follow if certain assumptions are made
about the collisions between the particles. These schemes solve the Boltzmann
equation governing the probability density of the molecular velocities, see for ex-
ample [Rei81], [Pul80], [Per92] and for a description of how they relate to flux-split
schemes [HLvL83].

Monte Carlo schemes such as Chorin’s Random Choice Method [Cho76], [ChoT77]
are notable as analytical tools and also as methods which perfectly resolve discon-
tinuities.

LeVeque’s long time step scheme [Lev82] is unusual in that it is not restricted
by the CFL condition (3.2.1). His idea is to explicitly track discontinuities and
calculate their interactions as they collide. A similar and more recent method by
Risebro and Tveito [RT90] breaks smooth parts of the solution into discontinuities,

which are then tracked.

3.3 The Roe Scheme

Roe’s scheme was chosen to solve the hyperbolic equations for the following reasons.
It is a Godunov-type scheme and so has the advantages of upwinding while being
conservative and correctly positioning shocks. Emmerson [Emm90] demonstrated its
superiority over characteristic and directional difference schemes for several prob-
lems of gas dynamics. Although there are now many schemes available which have

superior accuracy (e.g. Huynh [Huy95]) it remains one of the simplest Godunov-
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type methods to understand and implement and can be made second-order accurate

by the use of flux or slope limiters as shown in Section 3.3.1.

Details of Godunov’s scheme

We begin by setting out the details of the implementation of Godunov’s scheme,
which is the starting point of Roe’s scheme.

Consider a single cell z; with cell edges at z;_i/p and z;1/2 = z;_1/2 + Az at
time ¢ = 0. Godunov first considers a piecewise constant approximation @(z,0) to
the solution u(z,0) which, in cell z; takes the form,

1 gy
u(z,0) = U} := A_x/ e u(z,0)dz.
Ti—1/2

This function is then used as initial data for the conservation law

ou , of(a)

ot oz

— 0. (3.3.1)

The numerical approximation at the new time level ¢ = At is found by averaging

the solution of equation (3.3.1) over each cell, that is,

1 Tit1/2
Ut = —/ a(z, At)dz. 3.3.2
ao e (3.3.2)

However, instead of explicitly calculating G(z,t) we integrate the conservation law

(3.3.1) from © = x;_y 5 to x;11/2 and from ¢ = 0 to At to give,

Tit1/2 R At R R
/ (a(z, At) — d(z,0))dz + /0 £(0(2141/2, 1) — (@51 /2, £))dt = 0

i—1/2

and using the definitions of U? and U,

1 At
UM - U+ /0 F(00(2i51/2,2)) — £(A(25_1 /2, ))dlt = 0,

(3.3.3)

If we consider the interface z;_,/; in isolation, with the initial conditions

A U1 < Ti_1/2
uz'—1/2($7 0) =
u; T > Ti—1/2
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then the solution can be expressed as a similarity solution,

T — $i—1/2)
t ?

ﬁi—1/2($,t) = Wi_1/2 (

due to the invariance of the problem when the x and ¢ axes are scaled by the same
factor. Consequently the integrand in equation (3.3.3) is constant, provided that
At is sufficiently small that neighbouring Riemann problems do not interact. The
Godunov scheme can therefore be written,

UMt - U + A—x( ir12 — Fil12) =0,

where,

i1/2 = f(wi_1/2(0)), (3.3.4)

and w;_; 5(£) is the similarity solution to the Riemann problem at z;_; .

Approximate Riemann solvers

For the Euler equations the calculation of w(z/t) remains a nontrivial task and Roe
suggested that since so much information is lost in the projection (3.3.2) it would
not be detrimental to the method to use an approximation to the similarity solution
instead. We can use this approximate solution, w(z/t), in two ways. The first is

simply to replace w in the expression for the numerical flux (3.3.4) to give,

F?—1/2 = f(VAVi—I/2(0))a

which would immediately give a scheme in conservation form. The more common
approach which is followed here is to go back to the original idea behind the Godunov
method and average the approximate solution at the new time level,

1

Az /2
—/ Wi_1/2(&/At) df—i— / vAVz'+1/2(f/At)df

Un+1
Az

(3.3.5)
A method of this form is defined by Harten et al [HLvL83] as a Godunov-type scheme.

The two approaches do not in general give the same scheme and some care must be
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taken over the choice of approximate solution to ensure that this second method is
conservative.

To calculate such a condition on w consider the original conservation law,

u; + f(u), =0,
with initial conditions,
y <0
u., = >0.

If we integrate around the box [—M, M] x [0,T] we get, for M large enough,
M
| w(@/T)dx = M(w +u,) + T (£(w) - £(w)) = 0,

where w(z/t) = u(z,t) is the exact solution to the Riemann problem.

To have conservation we require that,

/wM W(z/T)dx = /M w(z/T)dx

thus the approximate solution must satisfy,

/wM w(z/T)dx = M(w +u,) + T (£(ur)) - f(w)) = 0. (3.3.7)

=M
Roe’s approximate Riemann solver

Roe [Roe81] suggested that an approximate solution to the Riemann problem can

be produced by solving a linearised version of the conservation laws
u; + Au, =0 (3.3.8)

where the matrix A = A(u;,u,) is a constant approximation to the Jacobian of f
at the interface between left and right cells. The solution to this linear system with
the initial conditions (3.3.6) is simply expressed in terms of the eigenvectors r; and
eigenvalues A; of A as
we/t)=uz,t)= > ar+ Y By
Ajt—2>0 Ajt—2<0
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where the left and right states have been decomposed into uz, = ¥Xo;r; and ug =
> B;r;. If the decomposition of the jump is given by ug—uy, = >(8;—a;)r; = Y. 6,1

then the solution can also be expressed as

W(Ib/t) =uy, + Z (SjI'j (339)
Ajt—z<0

=ur— », &1y (3.3.10)
Ajt—2>0

The particular form of the matrix A must be chosen to have linearly independent
eigenvectors so that this decomposition is possible and it must satisfy the consis-
tency condition that A(u;,u,) = A(u). A more difficult requirement to satisfy is the
conservation condition (3.3.7) which in general rules out the two most obvious can-
didates A((u, + w;)/2) and (A(u,) + A(w;))/2. For this linear problem the integral

of w is easily calculated to be

/ Y W(2/T)dx = M(u + u,) — T(Au, — Aw)

=M

reducing the conservation condition to
A(ug,u,)(u, — wy) = f(u,) — f(uw). (3.3.11)

Although Harten [Har83b| demonstrated that a matrix satisfying (3.3.11) exists for
all conservation laws with an entropy condition, his construction is too complicated
to use in practice. By the ingenious use of “parameter vectors”, Roe [Roe81] derived

an averaged matrix for the Euler equations which has the following eigenvectors and

eigenvalues,
)\1=’L_L—C_l )\QI’L_L )\3:’L_L+C_l
1 1 1
(3.3.12)
=\ u4—a Iy = U I's= | u+a
h — au u?/2 h+ au
where
= mul + \/p_rur
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and
F_ B+,
VPt \/Pr

are the Roe-averaged velocity and enthalpy respectively, and

E
pho BTP
p

a® = (v —1)(h — a%/2).

These are substituted into expressions (3.3.9) and (3.3.10) to get the solution to the
linear system which in turn are substituted in to equation (3.3.5) give Roe’s scheme.

Taking each integral in turn, we have from equation (3.3.8) that

1 Ax/2 .
I ;=A—x/§:0 Wi_1/2(£/At)dE (3.3.13)

1 n 1 At n R
=§UZ~ - A—x/o Ai_1 (Ui - Wi—1/2(0)) d¢

and on using the expression (3.3.10) for w (with R =4,L =i — 1)

1 At

L=Ur——Ai1a Y, jiapliiye
2 Az As s >0

jri—1/2Z

but since r; are eigenvectors of A this simplifies to

1 At
I ZEU? T Az Z )\jvi—l/Q(s',i—1/2rj,i_1/2.
Tt Ajim1/220
Similarly the second integral

1 0 . A
I ':A—x /§:—Aw/2 Wi+1/2(f/ t)d¢

on using expression (3.3.9) for w (with L =i, R =i + 1) evaluates to

1 At
=3Ur— o 2 Ninjebiinetiisy

L Ajitr1/250
giving an overall scheme

U?H =L +1

At
=Ur - | 2 Aanplinptimp+ 20 Nyt
L Ajit17250 Ajic17220
(3.3.14)
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Note that as written above this does not appear to be in conservation form (3.2.3).

However, if the alternative expression (3.3.9) for w;_;/, is used then I; becomes

1 At
I 1=§U? + Ai12(U7 = UL ) + g Z Nji—1/205,i—1/2Tji-1/2

Ajim1/2<0

and using the conservation property (3.3.11) this can be written

L= UL+ (U] — (UL ) + 5o 5 Agiyadiaitsin
Ajio1/2<0
and the scheme now takes the form
UMt = U - i—i (FHI/Q — Fi_1/2)
where
Fiiijp= Y Ai-1/20i-1/2Fji-1/2 + i—ff( ")

Aji—172<0

The scheme as formulated in equation (3.3.14) is preferred in practice since it does

not require the explicit calculation of f and is therefore less expensive.

Entropy corrections

It is well known that Roe’s scheme does not satisfy an entropy condition and can
give unphysical solutions in certain circumstances. This is because the approximate
Riemann solver replaces all of the waves in the Riemann solution with discontinuities,
even rarefaction waves. Simple entropy corrections have been proposed by several
authors such as Osher [Osh84], Roe [Roe85] and Yee et al [YWHS85]. However, since
the problem only occurs at sonic points, where a characteristic changes direction,
there is no need for a correction for our purposes since the flow in gas transmission
networks is never supersonic. The most extreme conditions occur at a pipebreak
where the flow is sonic at the break. The frictional term ensures that the flow within

the pipe remains subsonic.

45



Chapter 3. Numerical solution of the hyperbolic equations

3.3.1 The Second-order Correction

Analysis of the truncation error or the modified equation of Roe’s scheme shows that
the scheme is made second order accurate by a correction to the fluxes corresponding

to 2 — F' in Section 3.2. This correction takes the form,

1 At
Fiti2 = Fiv1o + 5 Z RYTIRY (1 - A_x|)\j,i+1/2|) Wiiti2
j

where the waves W are defined by
Wj = (SjI'j.

However, this would introduce Lax-Wendroff style oscillations near discontinuities.
Several remedies for this were described in Section 3.2 and the details of the imple-
mentation of flux-limiters are given here.

The correction to the flux is modified to be

1 At _
Fivijz = Finip + 5 D Ajire] (1 - A—x|)\j,z'+1/2|) Wiiti/2:
7

where V_Vj,iﬂ /2 is a limited version of the jth wave W;;,1/2. The wave is limited by

comparing it to the upstream wave, W;;_1/5 if Aj;11/2 > 0 or W ;3,5 otherwise,

A W,it12.W;;
Wiiv12 = Wji12® <|W J5i41/2 ,+1/2:I:1>

j7i+1/27 |W

Jrit1/2

where @ is a limiter, for example Roe’s superbee [Roe85]
®(a,b) = max(0, max(min(1, 2b/a), min(2, b/a))).

In the results in this thesis the superbee limiter was used exclusively, but it is possible
to use different limiters on each characteristic field. A popular combination (see
LeVeque [LeV95)) is to use the minmod limiter on the nonlinear fields and the more
compressive superbee limiter on the linear field to steepen contact discontinuities.

See LeVeque [LeV90] for other types of limiter.
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3.3.2 The implementation of the source terms by Strang
splitting

So far we have only covered solvers for homogeneous systems of conservation laws.
The hyperbolic equations (3.1.1) - (3.1.3) include source terms modelling friction
and heat conduction and this section describes the corresponding modification of
Roe’s scheme.

Emmerson [Emm90] gave a review of some of the state of the art techniques for
solving hyperbolic equations with source terms. The source terms for the hyperbolic
equations are not particularly stiff and can be handled adequately by a splitting
method, which is easy to implement.

Given a system of conservation laws with a source term
u +f,=s

a splitting method generates an approximate solution by alternately solving the
homogeneous system

u; + fw =0
and the system of ODEs
u; = s. (3.3.15)

If S;(t) is the solution operator for the inhomogeneous system (that is u(z,t) =
Sr(t)u(z,0)) and Sg(t) and So(t) the solution operators for the homogeneous and

ODE system respectively then the idea is that we can approximate
S1(At) ~ Sy(At)So(At).
In fact, more accurate results are obtained by using Strang’s splitting
S1(At) ~ So(At/2)Sr(At)So(At/2)

which is second order accurate in time. Although at first sight this appears to re-

quire 50% more work a simplification is possible which means that Strang’s splitting
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requires little more work than the first splitting proposed:

Si(t) ~ (So(At/2)Sk(At)So(At/2))A

= So(At/2)(Su(At)So(At) W29~k (At) So(At/2).

In practice the exact solution operators S are usually replaced by numerical approx-
imations (such as the Roe scheme in place of Sg) but Tang and Zheng [TZ95] have
shown that, under certain assumptions on the numerical schemes, the accuracy is
retained.

In all of the results in this thesis the frictional term takes the form puq|g|/p while
heat conduction has been neglected, {2 = 0. In this particular case we are fortunate

to be able to obtain an exact solution to the ODE

p 0

q | =~ | uqlgl/p

E 0

4t
which is )
p(t) p(0)
= __q0)

q(?) THaO)[t77(0)
E(t) E(0)

If the source term includes a heat transfer term or a more sophisticated friction term

then quadrature would probably have to be used to solve the equations.

3.4 Boundary Conditions

Most of the literature on the numerical solution of hyperbolic conservation laws
assumes an infinite or periodic spatial domain and so does not consider boundary
conditions. In industrial problems where we may wish to constrain the flow or pres-
sure at a node to a certain value, the accurate formulation of boundary conditions
is crucial.

Typical boundary conditions of interest are
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e a fixed pressure and temperature downstream of a compressor
e 3 fixed mass flow at a demand or source
e sonic flow at a pipe break (where the flow is choked).

The number of boundary conditions that can be applied to a hyperbolic system
to have a well-posed problem depends on the number of incoming and outgoing
characteristics at the boundary. A full discussion of this problem can be found
in a PDEs textbook such as Kevorkian [Kev90]. The characteristics of the Euler
equations travel at speeds u—a, u and u+a. In gas transmission networks the flow is
never supersonic and so |u| < a and the first and last characteristics are always left-
going and right-going respectively. The possibilities are now reduced to two. If the
gas flow is away from the boundary then there are two incoming characteristics and
two boundary conditions must be applied, a so-called inflow boundary. Conversely,
if the gas flow is towards the boundary then there is one incoming characteristic and
one boundary condition must be supplied and we have an outflow boundary.

However, the numerical method often requires more boundary conditions than
can be applied to the underlying equations.

As an example, consider the Lax-Friedrichs scheme (3.2.2) which has a three
point stencil. At the left edge of the domain the calculation of UT*! requires values
for all of the components of Uf, three in the case of the Euler equations, irrespective
of the number of outgoing characteristics. These additional numerical boundary con-
ditions must be chosen carefully to ensure stability and accuracy. For some schemes
this problem does not arise, the scalar upwind scheme (3.2.5) and its multivariate
equivalents (such as that used by Issa and Spalding [IS72]) naturally adjust the num-
ber of boundary conditions required according to the direction of the characteristics.

It will be shown in Section 3.4.2 that Roe’s scheme also has this advantage.
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3.4.1 Generating numerical boundary conditions

There are numerous ways of producing the additional boundary conditions required
ranging from simple extrapolation to discretisation of the characteristic equations.
Chu and Sereny [CS74] produced one of the few papers on the subject, describing
the merits of a wide range of techniques for the gas dynamics equations. A more
theoretical approach has been taken by Kreiss et al (see for example [Kre68]) who
examined the stability of linear systems for general linear boundary conditions.
However this work is not yet at a stage to be applied to nonlinear systems such as
the Euler equations.

In this section we describe and compare several methods for generating numerical
boundary conditions, one of which is specific to Roe’s method. For definiteness we

consider the left boundary condition
Ppo = const

and assume that the flow is towards the left so that only this boundary condition
is required. The simplest strategy is to extrapolate from the interior of the domain
to calculate the numerical boundary conditions. The extrapolation could be con-
stant, linear or quadratic and there is a choice of quantities to extrapolate from the

conserved variables

Po= M

go=q

to the Riemann invariants (if they exist).

Another strategy is to use a one-sided numerical method such as (3.2.5) to pro-
vide, say, pp and ¢qy. The most consistent approach is to use the information from
the outgoing characteristics. For systems possessing Riemann invariants this is triv-
ial. For the Euler equations we can discretise the characteristic equations (2.3.5),

(2.3.3), which is akin to using a one-sided numerical method, or use the Riemann
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invariants of the isentropic equations (2.3.4) in the hope that they will be sufficiently
close.

The following section describes an approach specific to Roe’s scheme which is
based on characteristic principles and has a natural extension to the branched pipe

networks of Chapter 6.

3.4.2 Cell-edge boundary conditions

In this section a method for imposing boundary conditions is described which is a
natural consequence of Roe’s method and automatically ensures that the correct
characteristic information from the interior of the domain is used.

As in Roe’s method we solve a linear system, but instead of finding the solution
between two cells we solve in the adjacent cell to the boundary as in Figure 3.4.1,
in this case a left hand boundary.

Assume that we can linearise the system and wish to solve equation (3.3.8) where
the matrix A may simply be A(Uy) or perhaps the Roe averaged A(U_;, Up) where
U_; is obtained by extrapolation (or reflection for a symmetric boundary condi-

tion such as zero flow). However A is obtained, it must have linearly independent

Characteristics

Boundary
-
h

[
IE_1/2 UO 151/2

Figure 3.4.1: The cell adjacent to the boundary
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eigenvectors r; so that the solution in cell 0 can be decomposed as

U() = Z ﬂjrj-
J
Similarly we decompose the unknown solution at the boundary, that is the left hand

edge of cell 0 as
U L = Z CVjI'j
J
where the ¢; remain to be determined. For definiteness assume that we have an

outflow boundary with the single boundary condition
9(Ur) = g(ou, g, 3) = 0

imposed on the cell edge, and of course A\s < 0. The two other equations required

to determine «; come from the outgoing characteristics
ar =B
Qg = fa.

In general this system will be nonlinear and require Newton iteration for solution.

The Jacobian of the system is easy to calculate as

where

=Vuyg.r;. (3.4.1)

Although the second and third equations are trivial and this system could be
reduced to a single equation it is easier to code in this form and incurs little over-
head. For an inflow boundary there are two boundary conditions and only the third

equation a3 = f5 is trivial.
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Once the o; have been calculated the solution at the cell edge can be constructed
U, =0, — Z o;r;
2<0

with 0, := (; — «;. This is then be substituted into the formula for I; (3.3.13) to
give an expression for U} which is formally identical to that for interior cells. The
only difference is in the calculation of o; and the choice of A. It will be shown in
Chapter 6 that this greatly simplifies the formulation of boundary conditions for
branched networks.

This cell-edge method calculates waves right up to the outside of the boundary
cells which can be used, as shown in Section 3.3.1, to calculate second order cor-
rections. Since the corrections are limited by an upstream wave it is not clear how
to apply a second order correction at the boundary cell outside edge, or even if we
should since the cell-edge would no longer satisfy the boundary condition. If the
correction is omitted, in effect suddenly switching on the limiter at the boundary,
then the solution has a small kink at the boundary cell. This can be removed by
extrapolating the waves from the boundary, purely for use in the limiter.

Emmerson [Emm90] describes an alternative method for imposing boundary con-
ditions on Roe’s method. Instead of imposing the boundary conditions on the cell
edge he enforces them on the cell itself. This gives a method which is formally very

similar.

3.4.3 A comparison of numerical boundary conditions

Some of the numerical boundary condition methods are compared in this section.
The tests are not rigorous comparisons of error, merely a look at the quality of the
solutions near the boundary. Initially the gas is at rest at a constant temperature and
pressure. For simplicity the test boundary condition is a sudden drop in pressure to a
new constant value. Since the pressure drops, the boundary is an outflow boundary

and no other boundary condition is required.
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The boundary conditions tested are:
1. constant extrapolation of p and ¢
2. linear extrapolation of p and ¢

3. cell-edge boundary condition

4. isentropic characteristics (2.3.4)
5. discretised characteristics (2.3.5)

The solutions near the boundary for all five numerical boundary conditions are
shown in Figure 3.4.2. In this figure the friction factor has been set to zero and
since the initial solution is uniform, the gas remains homentropic. The solutions
are shown after three timesteps at ¢ = 0.15s, compared against the ‘exact solution’
(calculated on a finer grid using the same boundary condition method for fairness).
It is immediately apparent that the best results come from methods 3, 4 and 5
which make use of the characteristics, confirming the findings of Chu and Sereny
[CS74]. Method 5 is a first-order accurate one-sided discretisation of the equations
in characteristic form similar to that used by Engl [Eng96] (she used a second-order
accurate discretisation). Unsurprisingly, since the problem is homentropic, method
4 gives an almost identical result. Note that the grid is displaced by half a cell for
method 3 since the boundary conditions are applied at the cell edge.

When friction is introduced the problem is no longer homentropic. In Figure 3.4.3
the results of a second test with y = 0.1 are presented. This is an unrealistically
large friction coefficient, but necessary to show an effect in such a short space of time.
Methods 3 and 5 still represent the flow field accurately, but method 4 overestimates
the flow since it does not include friction.

These results are not conclusive, after two timesteps the picture was different,
with method 5 being virtually perfect, and method 3 apparently giving poorer accu-

racy in the interior of the domain (possibly due to the shifted mesh). Furthermore,
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after more time steps numerical diffusion begins to dominate and there is little
difference between any of the schemes. However, we can conclude that character-
istic based methods provide smooth solutions near the boundaries, with method 3

performing as well as the others.

3.5 Summary

Numerical schemes for hyperbolic equations should be explicit, upwinded and,

if shocks are present, conservative

First-order schemes are too inaccurate, second-order schemes oscillate near

discontinuities so compromise with a flux-limited method

Roe’s scheme satisfies these criteria, and is easy to implement

Strang splitting offers a simple way to include the source terms

Summary of Roe’s scheme:
e At the old time level we have the cell-averaged quantities U; , 2 = 0..J,
e solve the inhomogeneous problem (3.3.15) over At/2,

e calculate the Roe-averaged eigenvalues A;;, /2 and vectors r;;,1/9, 1 = 0..J—1,

j =1..3 from (3.3.12),

e calculate the decomposition of the jumps AU, /2 = 35 0;41/2Ti4+1/2 in the

interior ¢ = 0..J — 1,
e calculate the decomposition of the jumps at the boundary as in Section 3.4.2,
e calculate the waves W; 1/2 = 0;iq1/2Tjit1/2, ¢ = —1..J, j = 1.3,

o set up the flux differences A7, ,AU =3, . >0 Ajit12Wjir1/2 and
i_+1/2AU = Z)‘j,i+1/2<0 )\j,i-l-l/?W ',Z'—|—1/27
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e update each cell U} = U; — RL(A} | ,AU + A,

z+1/2AU)7

e calculate the second-order corrections from Section 3.3.1 and update the cells,

e solve the inhomogeneous problem (3.3.15) over A¢/2.
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Chapter 3. Numerical solution of the hyperbolic equations

x 10° Pressure (Pa) flow (kg/m”"2/s) Temperature (K)
0
X % X
. ~2000 3001~
250
-4000 1.Const extr
4 200
2 -8000 100
0 . 100 200 0 100 200 0 100 200
x 10
8 0
6 -2000 001~
) 250
-4000 2.Lin extr
4 200
2 -8000 100
0 . 100 200 0 100 200 0 100 200
x 10
8 ~ 0 »
5 x ~2000 300p -
X 250
-4000 3.Cell edge
4 200
2 -8000 100
0 . 100 200 0 100 200 0 100 200
x 10
8 0
X
X
. ~2000 300[ 7
250
-4000 4.1sen char
4 200
2 -8000 100
0 . 100 200 0 100 200 0 100 200
x 10
8 0
X
X
. ~2000 300f 2
. 250
-4000 5.Disc char
4 200
2 -8000 100
0 100 200 0 100 200 0 100 200
X, M X, m X, m

Figure 3.4.2: The solution near the boundary after three timesteps, each row repre-

sents a method in the order given in the text. No friction.
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x 10° Pressure (Pa) flow (kg/m”"2/s) Temperature (K)
8 - 0 . «
. ~2000 300
250
-4000 1.Const extr
4 200
2 -8000 100
0 . 100 200 0 100 200 0 100 200
8 x 10 0
X X X
6 -2000 300]_~
) 250
-4000 2.Lin extr
4 2007
2 -8000 100
0 . 100 200 0 100 200 0 100 200
x 10
8 % 0
6 250
-4000 3.Cell edge
4 200
2 -8000 100
0 . 100 200 0 100 200 0 100 200
x 10
8 ” 0
X
. ~2000 300|_~
250
-4000 4.1sen char
4 200
2 -8000 100
0 . 100 200 0 100 200 0 100 200
x 10
8 0
x X
. ~2000 300|_~
] 250
-4000 5.Disc char
4 200
2 -8000 100
0 100 200 0 100 200 0 100 200
X, M X, m X, m

Figure 3.4.3: The solution near the boundary after three timesteps, each row repre-

sents a method in the order given in the text. u = 0.1.
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Chapter 4

Numerical solution of the

parabolic equations

Several models for one dimensional gas flow were discussed in Chapter 2 each of
which has its merits and shortcomings. British Gas has adopted equations (2.1.3)
and (2.1.4), obtained by neglecting the inertia terms in the momentum equation, to
simulate large networks of pipes undergoing relatively slow changes. The parabolic

model in its simplest form is

1 op Oq
19(p)
- Talg| = 4.0.2
5 5y THE qlg| =0, (4.0.2)

where the gas is treated as isothermal and so the temperature 7' is a given constant.
It will be demonstrated in Section 4.3 that the accuracy of the parabolic model is

improved if temperature variation is included. This more sophisticated model

10(p/T) L 01 _
R Ot oz
19(p%)
2 Oz

0 (4.0.3)

+ nuRTqlg| =0

+ some energy equation such as (2.3.1)

is naturally more difficult to solve.
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Chapter 4. Numerical solution of the parabolic equations

The parabolic equations justify their name by having more in common with
the heat equation than the wave equation. The equations transmit information
instantaneously rather than at a finite speed. Furthermore, unlike the hyperbolic
equations where we must specify two initial conditions, the parabolic equations only
allow initial conditions to be imposed on a single variable, p, ¢ or some combination
of the two. Whichever is specified, the other quantity must be chosen to be consistent
with the momentum equation (4.0.2). The question of which variable we should

choose is answered in the following section by the use of asymptotic expansions.

4.1 Asymptotic analysis of the isothermal parabolic
equations

The parabolic equations (4.0.1) and (4.0.2) are derived from the hyperbolic isother-
mal equations (2.1.1) and (2.1.2) by assuming that the inertia of the gas is small.

We return to the nondimensional isothermal equations

op Oq
2
Fa edd/p) Op  ddl _, (4.1.1)

ot «a Oz ox P

of Section 2.1 and examine the consequences of this assumption in more detail.
The small inertia assumption means that e is a small parameter, and we seek an

asymptotic solution of the equations in the form

P=potepr+ ...

q=qo+eq+ ...

This expansion is singular, since as € — 0 the nature of equations (4.1.1) changes

from hyperbolic to parabolic.

60



Chapter 4. Numerical solution of the parabolic equations

On substitution the lowest order terms satisfy

3170 3%

Il T Ly
“or T on
0
Opo |, wlaol _
oz Do

which are precisely the parabolic equations in nondimensional form. To understand
why these equations require only one initial condition we must examine the solution
of the full equations for small time. For small € there is an initial layer in which the
inertia terms play an important réle. To investigate this initial layer we rescale the
time variable

t=er, T~0(1)

and reformulate equations (4.1.1) as

p

37'+04 oz oz

Now we seek an inner expansion of the form

P=Do+e€p+ ...

g=qo+eq +....

Once again, we collect lowest order terms to derive the equations

9o

— = 4.1.2
or 0 ( )
Gy~ Opo dol o
—_— 4+ — —— = 0. 4.1.
or * ox T Do 0 (41.3)

Notice that we can impose two initial conditions on these equations and thus the
key to knowing what initial conditions to impose on the parabolic equations (4.0.1)
and (4.0.2) lies in the matching of the inner and outer asymptotic expansions.

It follows immediately from equation (4.1.2) that for small time, and away from

boundaries, Py can be considered constant in time and equal to its initial value.
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Chapter 4. Numerical solution of the parabolic equations

- tan(T) —- tanh(T) ... coth(T)

10

-4+

—-6F

-10 1 1 1 1 1 1
-15 -1 -05 0 0.5 1 15 2 2.5 3

Figure 4.1.1: The inner asymptotic expansion

Since py depends only on z, equation (4.1.3) is an ODE for gy as a function of 7.

Fixing x and, without loss of generality, assuming that

9o

— <0
oz

(if not then simply reverse the direction of = increasing), we define

e
B*(z) := —pO%.

We then integrate equation (4.1.3) to give the following expression for ¢y
{

Ztan (2 (r - C(x)))  do(x,0) <0 and 7 < C(z)

Go(,7) = Z tanh (22 (r - C(z))) Go(2,0) <0 and 7> C(g) or 0 < Go(s,0) <

\%coth (B~ Y (- C(IE))) do(z,0) > B

Po

B

with C(x) chosen to satisfy the initial conditions. These functions are plotted in

Figure 4.1.1. For all initial flows §(z, 0)

lim Go(z,7) = B(z)

7500 \/;7 )

Matching this solution to the lowest order outer solution, (see Hinch [Hin91]), shows

that the correct initial conditions for the parabolic equations are to use the same
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Chapter 4. Numerical solution of the parabolic equations

15 15
1.48 == ]
1.45 e
(O] (0]
5 5 1.46
[%] [}
3 3
8 14— g lad
1.42
1.35 1.4
0 0.02 0.04 0 0.5 1
time time
-1 -1
-1.05 -1.05
. -1.1 . -1.1
o o
-1.15 -1.15
12— - - . oo “1.21 %
-1.25 -1.25
0 0.02 0.04 0 0.5 1
time time

Figure 4.1.2: A comparison of the exact (-) (¢ = 0.01), lowest order inner (.) and

lowest order outer (-.) solutions at fixed z

initial pressure as for the inner solution but choose the initial flow to be

In other words, the initial condition is imposed on the pressure, and the flow is chosen

to be consistent according to the momentum equation (4.0.2). The validity of the
asymptotics is confirmed by Figure 4.1.2 which shows the expansions compared with
the solution to the full equations with ¢ = 0.01. The “exact” solution and the outer
solution were calculated numerically on a periodic domain using a method similar to
that which will be described in Section 4.2. The left hand figures show the solutions
for O(e) time, the right hand figures for O(1) time.

The asymptotic expansions rely on the inertia terms being of much smaller mag-
nitude than the pressure and friction terms in the momentum equation. Exami-
nation of the definitions of ¢, ¥ and « shows that this does not hold as ¢ — 0.

Consequently, the parabolic model is not valid for small flows. This is supported by
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Chapter 4. Numerical solution of the parabolic equations

numerical experiments which show that the parabolic solution to problems which
have stagnation points, and therefore small flows, are less accurate than those which
do not. Another demonstration of this is given in Section 6.3 where a stagnation
point is automatically tracked by the hyperbolic solver because it correctly deduces

that switching to the parabolic solver would introduce a large error.

4.2 Numerical schemes for the parabolic equa-
tions

The literature survey of Chapter 2 mentioned a number of numerical methods ap-
plicable to the equations of gas dynamics. In this section we describe in detail a
particular scheme which is used successfully by BG to solve the parabolic equations.
The scheme is used in the program FALCON (Fast Analysis of Large COnstrained
Networks) to simulate large networks over long timescales (hours and days).

The parabolic nature of the equations and the long timescales rule out explicit
schemes such as those of Chapter 3. Instead, we use an implicit method with time

discretisation based on the § method,

6 6
1 Pi"+1 - P n Q?-:—l/2 - Q?j1/2

e A =0 (4.2.1)
5( ) +1A:c( T HRTQH L, |QrHL, | = 0. (4.2.2)

The nonlinear algebraic equations at each timestep are solved by Newton’s method
in a few iterations with the initial guesses provided by the solution at the previous
timestep. Note that the spatial discretisation is made on a staggered mesh. This has
a number of benefits, especially for generalising the scheme to branched networks,
as will be seen in Chapter 6. A useful way of looking at the staggered mesh is to
consider the pressure as being evaluated at nodes, and the flow at the mid-point of
pipes, in other words a pipe is a mesh element. If such a mesh is too coarse then a

“real” pipe is split into a number of “artificial” pipes to improve resolution. A typical
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Chapter 4. Numerical solution of the parabolic equations

section of mesh is shown in Chapter 6, Figure 6.1.2. Like most schemes, equations
(4.2.1) and (4.2.2) may be motivated from several standpoints. A particularly useful
point of view for the mass equation (4.2.1) is to think of it as a discretisation of the

integral form of the conservation law,

Ang (BB + At (AQrH), — AQr1,) =0 (4.2.3)
BT RT i+1/2 i-1/2 ’

that is, the mass associated with node ¢ is AAzP;/RT and the mass flow out of the
node in one timestep is denoted AtAQY j2- This will be useful when interfacing
the scheme with hyperbolic schemes in Chapter 5 and also in its generalisation to
branched networks in Chapter 6.

On a uniform mesh with § = 1/2 this scheme is second order accurate in time and
space. On a nonuniform mesh, that is where the pipes are of different lengths, the
momentum discretisation (4.2.2) remains unchanged while in the mass discretisation
(4.2.1) Az isreplaced by (Az;_1/24+Ax;11/2)/2. A further advantage of the FALCON
scheme arises from the formulation of the Newton iteration. Rewriting the mass and

momentum discretisations (4.2.1) and (4.2.2) in the form

OALRT

Ji=DF+ Ap (Qi+1/2 - Qi—1/2) +a;

1
giv12 = 5 (PZ2+1 - Pf) + AzpRTQit1/2|Qit1 /2|5

where the superscripts on the variables at the new timestep have been dropped for
clarity and all the quantities at the old time step have been absorbed into a;, the

system we wish to solve is
fi=0
gi+1/2 = 0.
The Newton iteration takes the form
Qit1/2n+1 = Qit1/2|n + AQit1/2|n
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Numerical solution of the parabolic equations

where the updates AP; and AQ);;,/, satisfy

1 0
0 1
0 0
-P P
0 -PB
0 0
or

__OQALRT OALRT _ i L
Az Az
0 __OALRT Ab h
o AP, f2
0 0
AP; I3
2A:v,uRT|Q3/2| 0
AC23/2 g3/2
0 2AzpuRT|Qs /o]
AQ5/2 95/2
0 0

IAP + S;AQ = —f

SoAP + AAQ = —g

where the Jacobian matrix is

I 5
Sa A

For this discretisation the matrix multiplying the pressure correction in the mass

equation is the identity and we can eliminate AP from the equations to leave

This reduces the size of the problem by a factor of about two, resulting in a consid-

erable saving in the linear algebra.

4.2.1 Boundary conditions

Like the heat equation, the parabolic equations (4.0.1) and (4.0.2) require two

boundary conditions. Consider a pipeline divided into J pipes and J + 1 nodes.

The mass discretisation (4.2.1) is applied to the J — 1 internal nodes i =1...J —1

and the momentum equation to the J pipes i =0...J — 1, giving 2J — 1 equations
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Chapter 4. Numerical solution of the parabolic equations

for the 2.J +1 unknown P"**! and Q?jllp. The remaining two equations are supplied
by the physical boundary conditions, so there is no requirement for troublesome
numerical boundary conditions as there was for the hyperbolic equations of Chapter
3.

Implementing a pressure boundary condition is trivial but a flow boundary con-
dition is usually enforced at a node where ¢ is unknown, rather than at a pipe

midpoint. Therefore a slightly more complicated boundary condition is required

and the mass balance of equation (4.2.3) is modified to give, for example,

AA R LA (AQn+0 _F (tn+e)) —0
“\RT ~ RT /2 T -

where Fj (t) is the required mass flow. Another commonly required boundary con-
dition is to prescribe the Mach number. This arises when we wish to simulate a pipe
break as described in Chapter 2. The gas speed at the left boundary is approximated

by using the mass flux in the nearest pipe,

_ Q2 _ RToQup

Ui
° Qo By

The sound speed is given by a? = RT so the boundary condition to enforce a Mach

number M is

RTQuys _
VRILF,

or

MPO - Ql/g\/RTO = 0

Normally the parabolic model should not be used to simulate pipe-breaks since the
changes in momentum are great enough to require the inclusion of the inertia terms

in the momentum equation.
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Chapter 4. Numerical solution of the parabolic equations
4.3 Including temperature variation in the parabolic
model

There are often areas of a gas transmission network which are not isothermal but
are steady enough to be modelled by the parabolic equations. At a compressor, for
example, gas is strongly heated, raising the temperature by as much as 60K, and this
effect persists downstream long after friction has damped transients. If temperature
variation can be included in the model without serious disruption to the numerical
scheme then we gain modelling accuracy while retaining the simplicity of the scheme
of the previous section. Two methods which achieve this are described below, the
second was implemented successfully in the software used for this thesis.

Since temperature is allowed to vary, the discretisation (4.2.1) must be slightly
modified to approximate equations (4.0.3) and (4.0.4), taking into account that
o0 = P/RT is the conserved variable. A suitable discretisation of the mass equation
is

L n+0 n+0

1 e o i Qi—|—1/2 - Qi—1/2
R At Az

=0 (4.3.1)

while the momentum discretisation becomes

+1 +1
Pﬁ:l Pn+1 N MR(T"H n T"+1) ?+1/2|Q7+1/2| -0
Az o Py

or equivalently

(PHH — (P2

R T~n+1 Tn+1 n+1 n+1 =0.
(T QR

i+l J%i1/21%i41/2

(4.3.2)

4.3.1 Method 1: Explicitly solving for temperatures

Hill [Hil94] devised a method for BG to include temperature variation into FALCON.

He took the energy equation in the form (see Section 2.3)

DT . Op op
pAcht — (1 + pjicy) A= 5 pAu,uc][,a + pAuFt Q
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and used the small inertia assumption to neglect the Du/Dt term. Since he was
concerned with writing a method for industrial use he retained the Joule-Thompson
coefficient ji. He used the non empirical equation (2.4.2) to model the heat conduc-

tion term, both for transient and steady state flow, which is of the form
Q=B(T-T,)

where T; is the ground temperature and B a constant.

Hill’s first concern was with the steady state, for which the equation reduces to

oT .0
chp% — Aq,uc,,% = B(T - T,).

Assuming that all quantities except T' are constant and that p is linear in z, this
expression can be integrated from the inlet to the outlet to give an expression for
the outlet temperature. The algorithm for including this in the isothermal solver is

straightforward:

Algorithm 1

1.Calculate the pressures and flows in the pipes for a given average pipe temper-

ature

2.For this set of pressures and flows track and calculate the temperatures in the

pipes (starting at inlets and tracking to the outlet)

3.Go back to step 1 until convergence.

The tracking is slightly more involved for branching networks, this is discussed
in Section 6.1.1.

The exact integrals must be dispensed with for the unsteady case. Instead the
spatial derivatives are approximated by backward differences (backward with respect
to the flow direction). The time integration is then implemented by the theta-
method, resulting in a method which is explicit in 7. Algorithm 1 may again be

used at each timestep.

69
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The unsteady flow causes a slight complication to the temperature tracking: it
is possible to have a node connected to two pipes flowing in the opposite directions,
that is, a stagnation point. Hill resolved this by setting © = 0 in the equations for

this point and solving the resulting ODE
DT . Op
PAC;DE -1+ pﬂcp)AE = B(T - Tj).

It has been reported by Mallinson [Mal] that the time-dependent method suffers
from some instability. An explanation for this is suggested at the end of the next

section.

4.3.2 Method 2: An explicit solver for entropy

Explicit numerical schemes for the parabolic equations (4.0.1) and (4.0.2) are effec-
tively ruled out by the stability restriction on the timestep. However, isolating the

entropy form (2.3.3) of the energy equation

ds  9s Q/A+ ppu?lul
= — = 4.3.3
o " “or T (433)
we can consider it as an advection equation for s.

In contrast to the parabolic equations (4.0.2) and (4.0.3), this equation can be

solved by a number of explicit schemes such as the Lax-Friedrichs (3.2.2), subject

to the stability restriction that
lu| At

< 1.
Az

Typical gas velocities are around 10m/s and so if the minimum pipe length is about
1,000m this imposes a maximum timestep of 100s, which is not unreasonable. We

use this in the following algorithm

Algorithm 2

1.Calculate the entropy at the new time level from an explicit discretisation of

equation (4.3.3)
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2.Using estimates for the pressures and flows estimate the temperatures at the

new timestep from the calculated entropy

3.S0lve for pressures and flows at the new timesteps, using equations (4.3.1),

(4.8.2) and the estimated temperatures by Newton iteration.
4.Recalculate the temperatures using the new pressures and flows
5. Repeat from step 3 until convergence.

A variation on this algorithm is to update the temperature inside the Newton
iteration for the pressures and flows. This is slightly faster than the nested iterations
of algorithm 2. Unfortunately, even if the temperature variation in the solution is
small this has the effect of increasing the number of Newton iterations from around 3
to 10 or more. However, it would not be difficult to rewrite the mass and momentum
discretisation in terms of pressure, flow and entropy rather than pressure, flow and
temperature, removing the need for step 3 and restoring a quadratic convergence
rate.

Although it would be simpler to use an energy equation explicit in 7" such as that
used in Section 4.3.1, this imposes a much more severe restriction on the timestep
since temperature waves travel at the speed of sound, unlike variations in entropy.
This might explain the instability reported by Mallinson [Mal] for the previous
method.

The entropy equation (4.3.3) is a linear advection equation with source terms
and a variable wave speed u(z,t). Many solution techniques are available for this
equation and are fully described in the standard text books such as LeVeque [LeV90].
The first-order upwind method (3.2.5)

7 n
T Sit17 5% n n
sitt — g Uit1/2 Az T B; Uty <0
At ns?

n 5 n n
—Uih12 g T B U >0
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was chosen for its simplicity, where B}’ is some suitable discretisation of the source

term. The gas speeds are calculated from
P

20.
2Qiryz where ;= —.
0i T Qi+1 RT;

Uitr1/2 =
If u1/2 > 0 then a temperature boundary condition must be supplied at the left
hand side. Similarly the right hand side needs an extra boundary condition if the
gas speed in the rightmost pipe is negative. Note that this scheme will break down
if the flow reverses direction at some point in the pipeline. This problem will be
addressed in more detail in Section 6.1.1.

The improvement in accuracy when using this scheme is demonstrated by Fig-
ures 4.3.1 and 4.3.2. They show solutions calculated by the parabolic solver with
and without temperature variation compared with the exact solution of the Euler
equations. Here, as in the rest of this thesis, the adiabatic model is used, so 2 = 0.
The test problem consisted of a pipeline of 200,000m initially at a uniform state of
P =170 x 10°Pa, @ = 0, T = 280K. The pressure at the left boundary was lowered
to P = 65 x 10°Pa over a period of 900s while no flow was imposed at the right

boundary. The temperature-varying solution is noticeably better, particularly for

the flow field, even though the temperature variation is small.

4.4 Summary

The parabolic equations are a suitable model for slow dynamics where the

inertia of the gas is negligible.

The correct initial conditions are to supply the pressure, and choose the flow

to be consistent with it.

The parabolic equations may be less accurate when the flow is small.

The staggered mesh offers an effective numerical scheme which is easy to solve

and straightforward to extend to networks.
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e Including variations in temperature improves the accuracy of the solution.
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Figure 4.3.1: A parabolic solution with no temperature variation (o) compared with

Numerical solution of the parabolic equations
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Figure 4.3.2: A parabolic solution with temperature variation (o) compared with
the hyperbolic solution (-). Note the single parabolic point at the right-hand side
at 280 K. Since the flow is zero at the boundary the temperature discontinuity does

not propagate into the pipe.
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Interfaced methods

The hyperbolic and parabolic models of Chapters 3 and 4 each have their appli-
cations. The parabolic model is currently used by BG to simulate the NTS under
general operating conditions, but there are situations for which it is not sufficiently
accurate. On the other hand using the more accurate hyperbolic model is simply
not practical on the entire network.

Our solution is to combine the two approaches, using the hyperbolic model only
where necessary to capture rapid transients. An “interfaced” method has some of
the characteristics of a domain decomposition method since the network is divided
into regions which are treated separately. It is also an adaptive method because the
hyperbolic regions must move to track the rapid transients. Figure 5.0.1 is a sketch
of a typical situation, the tracking of a shock as it moves through a network.

We begin by considering the domain decomposition problem and discuss the

tracking of rapid transients in Section 5.6.

5.1 Interfacing two models

Domain decomposition methods have recently received much attention as techniques
to enable the solution of 2 and 3D problems which would otherwise be too large for

a single computer. Typically, parallel computers are used to solve each subdomain
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1%

@ @
—— Parabolic  --- Hyperbolic

Figure 5.0.1: The tracking of a wave in a typical network

on a separate processor. For elliptic and parabolic problems the difficulty is that
the domains cannot, by the nature of the equations, be completely decoupled. The
numerical scheme is almost always implicit, and requires the simultaneous solution at
every grid point (although, for certain domains, there are ingenious frontal methods
[Duf96] which ‘nibble’ away at protruding areas and reduce the size of the problem
to be solved) or an iterative method. The best known iterative scheme is due to
Schwartz [Sch90] who proposed the algorithm which bears his name. His idea was
to decompose the initial domain  into two (or more) overlapping subdomains Q4
and {2s. The solution is first calculated on 2;. Boundary data is available on the
boundary that €2; shares with Q, but must be guessed on 9€; /9. The estimated
solution on € is then used to provide boundary data on 99Q,/0Q for the solution
in {25. This process continues, alternating from solving {2; to {25 until convergence.
Due to the sequential nature of the algorithm it is not suited to parallelisation.
An alternative algorithm which may be parallelised is to have domains which do
not overlap, but meet at a boundary I'. An estimate of the solution on I' is used

as boundary data in 2; and s which are then solved, possibly in parallel. Some
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interface condition is then used to update the estimate of the solution on I', usually
that the solution and its normal derivative are continuous. The process is iterated
to convergence. A version of this algorithm is used in Section 5.2 while a Schwartz-
type method is proposed in Section 5.3.1 and shown to be equivalent, given the right
interface condition.

Domain decomposition for hyperbolic problems again allows advantage to be
taken of parallel machines, but is also a tool to use adaptive or fitted meshes. Star-
ius [Sta80] used a composite mesh with an outer mesh fitted to the boundary of the
domain and a simple rectilinear mesh in the interior to solve the two dimensional
shallow water equations. The challenges of domain decomposition for hyperbolic
equations are rather different to those for parabolic and elliptic equations. Usually
the numerical method is explicit and so the domains may be decoupled without re-
quiring iteration. However, when shocks are present it is essential that conservation
is respected between the domains. Authors such as Chesshire and Henshaw [CW94]
and Berger [Ber87] have investigated this aspect. Since the domains are decoupled
it is possible to use different timesteps on the different domains. The stability of
overlapping meshes has been examined by Berger [Ber85] using G-K-S theory for
the Lax-Wendroff method and by Duncan [Dun95] for the one dimensional acoustic
wave equation.

Similar issues must be resolved to link the parabolic and hyperbolic models. The
parabolic solver is implicit and so we cannot completely decouple the domains, the
timesteps are different, and we may be concerned about conservation between the
domains. Additionally the models are based on different assumptions, leading to
questions such as how to assess error, that is, with which model do we compare the
calculated solution?

On the positive side, the problem is only one-dimensional and so the interfaces
are just single points. This results in faster convergence of iterative methods and

makes it practical to use alternative iterative strategies as described in Section 5.2.5.
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The question of error measurement is dealt with in Section 5.7, while the problem
of the inconsistency of the models is deferred to Section 5.2.4 by initially considering
decomposition using the same model in both domains.

To simplify the problem in the following sections we always place interfaces
between the hyperbolic and parabolic domains at nodes and only move them at the
end of the parabolic timestep. Thus, a pipe (i.e. a parabolic mesh element) is either
completely hyperbolic or parabolic for the duration of a parabolic timestep. The
hyperbolic equations are solved on a finer mesh, both in space and in time, since
we wish to capture fine detail. Additionally, we constrain the ratio of hyperbolic
to parabolic timesteps to be an integer to ensure that the hyperbolic solution is
available at the end of a parabolic step without additional interpolation.

In this chapter we denote the parabolic timestep by Af and the hyperbolic
timestep by 0t. If §t,,.; is the hyperbolic timestep required for stability then we

choose
At
O = Cel(A/5tm)

where ceil(z) 4 2 rounded up to the nearest integer. In the following sections we
will consider strategies to link a single parabolic domain to a single hyperbolic
domain where the position of the interface is given. A typical interface is depicted in
Figure 5.1.1. In most cases the methods are directly applicable when there are many
interfaces; details are given where necessary. The ideas are extended to networks in

Chapter 6.

5.2 Iterative Methods

We begin by considering the simplified problem of linking two domains of a “lin-
ear” network where both domains are modelled by the hyperbolic isothermal equa-

tions (2.1.1)- (2.1.2). The equations may be solved using the FALCON-like scheme
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Figure 5.1.1: A typical interface.
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(5.2.1)

which uses a staggered mesh such as that in Figure 5.2.1 with different mesh sizes
and numbers of timesteps in the left and right domains. Calculating all of the
variables simultaneously at the end of a large timestep is impractical so the problem
is decoupled into left and right domains and the interface treated as a boundary.
Suppose we are given the pressure at the interface at the end of the large timestep.
We can use this as a boundary condition for the right domain. The boundary
conditions for the left domain must also be provided at intermediate times along

the interface by interpolation. The solution in the left domain may then be found

time
9 P}
D)
q" . b
Py Q% /2
1 0
Dy
1 1/2
9_1/2 / o
P P?

Figure 5.2.1: The staggered mesh at an interface.
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at each small timestep until the solution at the end of the large timestep is known.
The remaining question is how to calculate the pressure at the interface at the end
of the large timestep. This is generated by an interface condition such as enforcing

conservation of mass at the interface and from this an iterative algorithm arises:

Algorithm 3

1.Choose a starting value P.

2.Solve for a large timestep in the right domain using P as a left boundary

condition.

3.Solve the left domain until a large timestep has elapsed using interpolation to

provide right boundary conditions from P.
4.Use an interface condition to generate a new value of P.

5.Return to step 2 and iterate until convergence.

We can choose the initial guess for P in several ways, for example by extrapo-
lating from the previous timestep or by first solving over the entire network using
the large timestep. Both the interface condition and the type of interpolation at the
interface may be derived by consideration of conservation of mass and momentum.
It was noted in Chapter 4 that the numerical scheme (5.2.1) can be considered as a
finite volume scheme where mass in node ¢ is

AAzP;
RT

and momentum in a pipe i+ 1/2 is

AA!EQz‘+1/2-

Conservation of mass at the interface then leads to the interface condition

Az + oz

m—1
W(Pg — P)) + AtQ1 ), — Y dtg" 7, =0. (5.2.2)
k=0
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Figure 5.2.2: A solution calculated by Algorithm 3

In the specific case of # = 0.5 linear interpolation of P guarantees momentum

conservation since

m—1
Momentum flux from left = > 5tp]3+1/ ?

T
Ll

S 6t(ph + pt)/2

T
Ll

k k+1
5t | —(P - P -~ (P} -P? 2+ 6tP?
(L - ry+ S m - ) 2+ o

>
Il

0

= (P! + PY)At/2 = AtP,/?

= Momentum flux to right.

A typical result from this algorithm is shown in Figure 5.2.2.

5.2.1 Is conservation necessary?

The introduction to this chapter mentioned the efforts made by several authors to
generate conservative interface conditions when using domain decomposition for hy-
perbolic conservation laws. A paper by Pért-Enander and Sjégreen [PES94] suggests
that conservative interpolation between meshes is less accurate than a nonconserva-

tive method, though their results confirm that conservation is vital where there are
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shocks. However, the aim of this work is to link hyperbolic domains with parabolic
domains. If a shock crosses an interface and enters a parabolic domain then it will
no longer be resolved correctly which means that the interface is incorrectly placed.
Thus, strict conservation is not necessary for the situations we consider, though it is
useful to suggest possible interface conditions. For example, linear interpolation may
be used at the interface for any value of # in (5.2.2) and provide good results even
though momentum is not conserved. We also have the freedom to see if quadratic
or higher order interpolation will improve accuracy.

As for the interface condition, many variations of equation (5.2.2) are possible,

such as this discretisation of the continuity equation

1P -P Q- Qup
RT At Az

=0 (5.2.3)

where Q_; /2 is some suitable measure of the flow in the left hand domain, for example
an average of ¢; and Az is an appropriate distance.
Different interface conditions are evaluated at the end of this chapter in Section

5.7

5.2.2 Convergence behaviour of Algorithm 3

Algorithm 3 is simple to implement but does not converge quickly or reliably, with
performance deteriorating as the ratio of At to Az grows. The rate of convergence
may be improved by use of a relaxation parameter w, modifying step 4 of Algorithm 3

to

4. Use an interface condition to generate a new value of P: P*. Use (1 — w)Pyq+

wP* in the next iteration.

Although w can usually be chosen to ensure convergence, this method will at
best converge linearly and the rate is still poor. Typically we might have At = 600
seconds, Az = 5000 metres and choose w = 0.5. The relative error at the interface

converges from 0.02 to 107° in about 14 iterations, which is too slow.
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Figure 5.2.3: Advancing to the new timestep simultaneously from both domains

In an effort to improve reliability we try a slightly different strategy which ad-
vances to the new large timestep simultaneously in both domains. As in Algorithm
3 the pressure at the interface at the end of a large timestep is estimated and in-
terpolated to provide boundary conditions for the left hand domain. The solution
in the left hand domain is then calculated up to the penultimate small timestep.
A generalised numerical method which takes account of the different timesteps is
then used to advance the final timestep in left and right domains simultaneously as
shown in Figure 5.2.3. This new strategy performs little better than Algorithm 3
in practice and would be quite difficult to implement when the different models are
used. It is not pursued further here since a superior method is presented in Section

5.2.5.

5.2.3 A model for the behaviour of Algorithm 3

The analysis of Algorithm 3 is complicated and is even more so when the full
parabolic and hyperbolic models are used. Some insight may be gained by con-
sidering a model problem, the same algorithm applied to the linear wave equation

v+ u; =0
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where the exact solution is used in the algorithm in place of a numerical one. In a
similar spirit to the use of modified equations to simulate numerical schemes we are
using an analytical solution to explain the behaviour of a numerical algorithm.

The wave equations are solved for ¢ > 0,z € (—o0, 00) with initial conditions

u(z,0) =0

v(z,0) =0,

which gives the trivial solution v = v = 0. Since the problem we are considering
is linear, we may choose these initial conditions to simplify the calculation without
loss of generality. Suppose now we place an interface at £ = 0 on which we impose
the boundary condition u(0,t) = P(t). We examine different interface conditions
by using them to deduce P and thus the exact solution.

For general P(t) the solution is

(

0 T < —t

Plz+t) -t<z<0
u(z,t) = < (5.2.5)
Pit—z) 0<z<t

0 >t

\

(

0 T < —1

—P(z+1t) -t<z<0
v(z,t) = ¢ (5.2.6)
P(t — x) 0<z<t

\ 0 >t
and so |P(£)| could be considered as a measure of the error introduced by the
interface.

We now apply the interface condition that we wish to analyse. For example, sup-

pose we have a mesh of uniform spacing Az and A¢ with u defined as usual. Choose

the function P(t) to be piecewise linear and consistent with the initial conditions

P(t):AitP* 0<t< At
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where P* is to be determined by discretising the first of the wave equations (5.2.4),

P*|n+1_0 U%|H_U£1|n+vg_vo—1

At 4Azx 4Azx

=0. (5.2.7)

The bars beside some terms such as P*|,;1 denote iterate numbers. Recall that
the algorithm is to guess P*|y and calculate the solution by substituting P(t)|o into
(5.2.5) and (5.2.6). We then use interface condition (5.2.7) to generate P*|; and

iterate. The algorithm can be written compactly as
P*|n+1 = F(P*|n)

and to investigate whether it converges we need to determine if |dF(P)/dP| < 1.

Differentiating the interface condition (5.2.7) gives

1 d(Plar) | L (d(vﬂn) d(vhln>>=o.

At d(Pl,) | 4Az \d(P*[)) ~ d(P*],)

To calculate the derivatives of vl |, we need to know whether they lie in the domain
of dependence of the interface and this depends on the mesh ratio A = At/Axz.
If A < 1 then they do not, the derivatives are zero, and the iteration converges

immediately. If on the other hand A > 1 we have, using the exact solution (5.2.6)

vl |n = — P(=Az + At)),

vﬂn =P(—Az + At)|,

and on differentiating

d(e' )l __ d(P(=Dz +Ab)))
A(P*y) d(Pl.)
d(v}]a) _d(P(=Aa+ At)],)
dPl) " AP

We now use the linearity of P(t) to deduce that

d(P(t)ln) _

d(P*|,) ~ At
Finally, combining all of these results we find that

dFf 1
%—5( —A)
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Figure 5.2.4: The number of iterations required for convergence against lambda

and the iteration will not converge for A > 3. If a relaxation parameter w is intro-

duced as in Section 5.2 then the equivalent criterion is
1
(1 — w) +w§(1 - A)| <1

If X\ is large then it can be seen that a small positive w will ensure convergence,
agreeing with the results seen in practice.

If we solve the wave equations (5.2.4) with a numerical scheme and apply Algo-
rithm 3 we find very good agreement with this theory, even though we are no longer
using an exact solution. Figure 5.2.4 shows the number of iterations required to
satisfactorily converge as the mesh ratio A is increased. As predicted, the algorithm
diverges as A passes 3. Note that for A < 1 the expected immediate convergence
does not occur in practice since the implicit numerical scheme has an infinite domain
of dependence. Consequently a change at the interface has a small influence on the
interface condition even though its stencil takes values from outside the analytical

domain of influence of the interface.
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Parabolic domain

Interface

Figure 5.2.5: The domain of dependence of the interface for a numerical method

with a three point stencil.

5.2.4 Interfacing the hyperbolic and parabolic models

Algorithm 3 requires little modification to interface a parabolic and a hyperbolic
domain. We now refer to the domain with the finer timestep as the hyperbolic
domain, modelled by the Euler equations (2.0.1) - (2.0.1) and solved by a method
such as Roe’s scheme, described in Chapter 3. The domain with the coarser timestep
is the parabolic domain, modelled by the parabolic isothermal equations (2.1.3) -
(2.1.4) and solved by the staggered mesh scheme of Chapter 4.

If an explicit numerical method such as Roe’s scheme is used for the hyperbolic
domain, it is only necessary to compute over the entire domain on the first iteration.
On subsequent iterations only the numerical domains of dependence of the interfaces,
shown in Figure 5.2.5, need to be recalculated allowing large efficiency savings.

The new feature of the hyperbolic model is the extra variable, temperature.
Since temperature may now vary, interface conditions such as (5.2.3) must be refor-

mulated, for example as

1/2 2
o —db, Qils — Q1

= 5.2.8
At Az 0 ( )
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or

Pl Tl_PO TO 1/2_~
o/To = B/TE | @z~ Qe _ (5.2.9)
RAt Az

allowing the choice of stipulating g or P on the boundary. When the gas is flowing
from the parabolic domain to the hyperbolic domain the hyperbolic domain requires
an extra boundary condition which should come from the energy equation (2.0.3).
This equation could be discretised in a similar manner to the mass equation to
produce an extra interface condition. However, as was remarked in Section 5.2.1
strict conservation of energy is not required. It is simpler to set the temperature
of the incoming gas in the hyperbolic domain to that of the gas coming out of the
parabolic domain.

When the gas flow is in the opposite direction, from the hyperbolic to the
parabolic domain, we cannot impose an extra interface condition. Since the parabolic
domain is isothermal we must tolerate a discontinuity in the temperature at the in-
terface as a consequence of the use of inconsistent models. One way round this is
to use the temperature-dependent parabolic model (4.0.3) and this model is used
throughout the remainder of this thesis.

In summary, the only change required of Algorithm 3 is that a step is included
transferring the temperature from one domain to the other, interpolating in time
along the interface as necessary. The convergence rate of the iteration appears to
be better if p is specified at the interface rather than P.

In Section 5.2.3 a model was presented which predicted the convergence be-
haviour of Algorithm 3 in an idealised case of solving the wave equation. The
isothermal Euler equations also transmit waves, with speed ¢ = v/RT. Even though
a friction term is now present and the parabolic model is quite different from the
wave equation, the linear model provides a reasonable estimate of the properties of
Algorithm 3 as applied to the parabolic-hyperbolic problem. Figure 5.2.6 shows the
rate of convergence against A = aAt/Ax for a large range of mesh ratios (note the

log scale). Once again, the Algorithm begins to diverge at around A = 3.
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Figure 5.2.6: Geometric mean convergence rate over 6 iterations for different mesh

ratios. Circles for A < 3, crosses for A > 3.

When several interfaces are present Algorithm 3 may be applied unchanged, with
each interface having its own interface condition. If two interfaces are separated by
a hyperbolic domain then the hyperbolic domain will be larger than the domains of
influence of the interfaces and they will not interfere with each other. Due to the
infinite wave speed in the parabolic domains, two interfaces separated by a parabolic
domain will influence each other but the dominating friction term will keep this effect
small. If the interfaces are placed correctly therefore, we may consider each interface

independently.

5.2.5 A faster converging algorithm

Algorithm 3 is an effective and simple way to link hyperbolic and parabolic domains
but converges unacceptably slowly. Even with a good choice of relaxation parameter
w convergence will always be at a linear rate. The algorithm may be improved by

the use of the secant method. If we treat the entire process as a “black box” function
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then the algorithm may be expressed, as in Section 5.2.3, as
Pl = F(P|y) (5.2.10)

where F' is equivalent to the entire process of solving the hyperbolic and parabolic
domains and generating a new estimate of P from equation (5.2.3) (for example).
We then define the function G(P) = F(P) — P and solve G(P) = 0 by the secant

method*:
P|n—1 - P|n—2
(Pln-1) — G(Pla-2)

P|n = P|n—1 - G G(P|n—1)

Table 5.2.1 shows the dramatic improvement in the number of iterations that this
makes.

Unfortunately it is not possible to investigate the convergence of the secant
method with the same model as for Algorithm 3 since a linear theory predicts
immediate convergence. However, practical experience has shown that provided the
first and second guesses are chosen reasonably well this method will converge. The
second guess may be made by using Algorithm 3 with a suitable choice of relaxation

parameter w.

5.3 Extending the method to several interfaces

The iterative Algorithm treats a problem with several interfaces is a similar fashion.

We generate the new interface pressures with the vector version of equation (5.2.10)
Pln1 = F(P|y). (5.3.1)

For At larger than a certain size equation (5.3.1) suffers from the same convergence
problems as equation (5.2.10) and is cured in a similar way. We define the vector

function G(P) = F(P) — P and use an (n + 1)-point sequential secant method (see

*It is not practical to use Newton’s method since in all nontrivial cases F' cannot be written

down explicitly.
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Algorithm 3 Secant method
Iteration | error In(error) | error In(error)
1 9.3 x 1072 -2.38 9.3 x 1072 -2.38
2 6.8 x 1072 -2.69 6.8 x 1072 -2.69
3 2.8 x 1072 -3.98 3.5 x 1073 -9.66
4 9.6 x 1073 -4.64 1.0 x 1074 -9.21
) 3.7x 1073 -5.60 1.7 x 1077 -15.59
6 1.4 x 1073 -6.57 8.5 x 10712 -25.49
7 53x 107 -7.54 4.0 x 10716 -35.46

Table 5.2.1: A comparison of the fixed point and secant methods for Algorithm 3.
[OR70])
Plo=Pla1—J " 1GPn1) (5.3.2)

where J|,—1 is a numerical approximation to the Jacobian of G constructed from
the last k iterates, where k is the number of interfaces and the length of the vectors.

It is calculated from

J|"_1 Y|n—1 Y|n—2 el T H|n—1 H|n—2
where
yx € Pl — Ples (5.3.3)
H|, & G(P|i) - G(P|p_1) (5.3.4)

and requires the first £ values of P to be given. These can be calculated from a
relaxed version of equation (5.3.1) since all we require are k values of P and the
corresponding F(P), it is immaterial whether they converge, though (5.3.2) will

converge faster if they are close to the solution. We assume that the successive y|
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are linearly independent - a code for practical use would need to verify this and take
remedial action if this is not the case.

Due to the minimal interaction between the interfaces the off-diagonal elements
of the Jacobian will be relatively small. We can exploit this by using the secant
method independently on each interface for the 3rd to kth iterations.

When we include the temperature interface condition in the process the rate of

convergence improves still further.

5.3.1 A Schwartz-type method

This method is based on allowing an overlap between the meshes of the hyperbolic
and parabolic domains as shown in Figure 5.3.1.

Assume as before that estimates of the pressure (or density) and temperature
are available on the interface. These are used as boundary conditions for the hy-
perbolic domain. Once the hyperbolic solution has been calculated at the midpoint
of the adjacent pipe, it is used as a boundary condition for the parabolic domain,
which updates the interface estimates, and so on. In fact this is the same as the
nonoverlapping method (Algorithm 3), but with the discretisation of the parabolic

mass equation,
0
96—, Qi —P
At Az

as the interface condition.

We use the notation ¢ = Pq to represent the transfer of information from the
hyperbolic domain to the boundary of the parabolic domain. This will be discussed
in Section 5.5.

In practice this algorithm converges less quickly than the previous method.
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Figure 5.3.1: Overlapping meshes

5.4 Noniterative methods

The iterative method of Section 5.2 has the flexibility to allow a large choice of
conditions at the interface between the parabolic and hyperbolic domains. However,
iteration is computationally expensive and we must investigate whether it is justified.

This section outlines 2 noniterative methods. We could also include using equa-
tion (5.2.2) with # = 0 as a noniterative method since it gives the interface condition
explicitly, although it imposes a severe restriction on the size of At to ensure stabil-
ity. Comparisons between the accuracy and expense of the following methods and

the iterative method of Section 5.2 are made in Section 5.7.

5.4.1 Method 1: Superimposed grids

The basis of this method is to take advantage of the fact that the parabolic model
should produce a reasonably good solution in the domain of the interface (oth-
erwise the interface is too close to the transient.) The first step is to use the
parabolic method on the entire network, including hyperbolic domains. Although
the parabolic model will not accurately resolve the fast transients it will give an

estimate of the effect that the fast transients have on the rest of the network. We
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then superimpose the hyperbolic mesh, using the parabolic solution to provide the
boundary conditions at the interfaces and interpolating as usual.

To calculate the parabolic solution on the entire network we need to map the
hyperbolic solution onto the parabolic mesh at each parabolic step as described in
Section 5.5. Consequently there will be discontinuities in the data for the parabolic
solver at interfaces. However, the damping inherent in the parabolic model seems
to be enough to smooth out the discontinuities at interfaces. A disadvantage is
that transients will affect the entire network instantaneously due to the infinite
transmission speed of the parabolic model. Nevertheless, this method is particularly
attractive because of its simplicity.

In summary the algorithm is,

Algorithm 4
Assuming we have arrived at the beginning of a parabolic step with hyperbolic and

parabolic domains,

e Map the hyperbolic solution to the parabolic domain.
o Calculate one parabolic step on the entire mesh.

e Calculate hyperbolic steps, using the parabolic solution to provide boundary

conditions, until one parabolic timestep has elapsed.

5.4.2 Method 2: Domain of dependence

This method exploits the finite domain of dependence of the hyperbolic equations to
explicitly generate the variables at the interfaces at the end of a parabolic timestep.
The idea is to calculate the hyperbolic solution in the parts of the parabolic domain
belonging to the finite domains of dependence of the interfaces as illustrated in
Figure 5.4.1.

At the initial time-level we transfer the data from the parabolic mesh to the now

enlarged hyperbolic mesh by one of the methods that will be discussed in Section 5.5.
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Figure 5.4.1: The domain of dependence of a hyperbolic domain

The states at the interface are then used as boundary conditions for the parabolic
domain.

A drawback of this method is the rate at which the domains of dependence
grow with the timestep. Furthermore, the task of calculating the domains of depen-
dence of the hyperbolic regions is complicated, and would be even more so with a
branching network. We could have domains of dependence overlapping each other,
or themselves in a looped network, which would be inefficient but difficult to avoid.

This method was therefore not pursued further.

5.5 Transferring data between the meshes

All of the interface methods require the transfer of data between the hyperbolic and
parabolic domains. The transfer is required for two reasons, firstly when a pipe
switches from one mode to another its data must be transferred to a coarser or finer
mesh. Secondly, the linking condition at an interface often requires information from
one type of domain on the mesh of the other.

If we denote the projection operator from the hyperbolic mesh to the parabolic
mesh by P and that from the parabolic mesh to the hyperbolic by H we should
require that PoH = Z, the identity. This ensures that if a pipe is switched repeatedly

from hyperbolic to parabolic and back again the operation of transferring data will
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Figure 5.5.1: Transfer of flow and pressure data between hyperbolic and parabolic

meshes

not corrupt the solution. The hyperbolic mesh is generally finer than the parabolic

mesh and so some information is inevitably discarded by P and we cannot require

that HoP =1.

5.5.1 Some illustrative examples

Due to the staggered parabolic mesh there are some small technical differences
between the transfer of pressure/temperature data and flow data. Consider first the
transfer of the flow data from parabolic to hyperbolic mesh as depicted in Figure
5.5.1. Perhaps the simplest strategy is to use piecewise constant interpolation and
set ¢; = @, allowing discontinuities in the hyperbolic data at nodes. For the pressure
and temperature data the method is similar, except that the discontinuities occur
at the pipe mid-points as shown in Figure 5.5.1.

There are many consistent possibilities for the reverse process of mapping from

the hyperbolic mesh to the parabolic mesh. The two most obvious are pointwise

QQ = ¢; =z, 1s the point nearest the pipe centre (5.5.1)
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where the hyperbolic point closest to the midpoint of the pipe is used, or averaged

Q=g (5.5.2)

which is more computationally expensive but less affected by discontinuities in the
hyperbolic solution. Figure 5.5.2 shows an initial wave transferred to the coarse
parabolic mesh using equation (5.5.2) and back to the hyperbolic mesh by piecewise
constant interpolation.

Although simple to implement, piecewise constant interpolation is not accurate
enough. This causes difficulties when a pipe becomes hyperbolic; the discontinuities
caused by the interpolation propagate down the pipe causing the adjacent pipe to
become hyperbolic, and so on. However, using linear interpolation instead is not
completely trivial. The simplest approach is to simply linearly interpolate between

nodes and pipes as shown in Figure 5.5.3:

:EZ'—X Xj+1—IEZ'

Di = HPP = ijpj—l—l -+ T{ER? Xj <z < Xj-l-l (553)
T — X;_ X, - x;
g =H,Q= Tx]m@jﬂﬂ + %Q_f—lﬂ Xj172 <y < Xjy1)2

(5.5.4)

where z; is position of hyperbolic cell ¢, X; the position of node j and X;,/, the
pipe midpoint.

This is consistent with choosing P to be (5.5.1) but not the averaging (5.5.2).
This latter projection does not satisfy P o H = 7 and tends to smooth peaks and
troughs if used repeatedly, as demonstrated in Figure 5.5.4.

The final interpolation discussed here is piecewise linear and consistent with
both equations (5.5.1) and (5.5.2). We follow the idea introduced by van Leer
[vL79] to provide a piecewise linear conservative interpolation. Within a “cell” the

interpolation takes the form

g = HQ = Qjy12 + (zi — Xjy1/2)0541/2 Xj <z < Xjn
(5.5.5)
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... original wave, o parabolic, — hyperbolic
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Figure 5.5.2: Averaging to the parabolic mesh followed by piecewise constant inter-

polation back to the hyperbolic mesh.

... original wave, o parabolic, - hyperbolic
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Figure 5.5.3: Linear interpolation between parabolic data points
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where the slopes ¢;1/2 are provided, for example, by the minmod limiter

(

0j 0| < |oj41], 050541 >0

Ti+1/2 = Y o1 |ojql| < lojl, 050541 >0

0 otherwise
\

where

_ Qjrrja = Qj-vy2
Az

_ Qjts2 — Qi
0j+1 = A:E .

gj

An example using this limiter is shown in Figure 5.5.5. Note that continuity has
been sacrificed for conservation.
Some options for P and ‘H are summarised in Table 5.5.1 and compared for ac-

curacy in Figure 5.5.6. The additional complications of data transfer on a branching

P H
1 | Pointwise Constant
2 | Averaged Constant

3 | Pointwise | Linear, continuous
4 | Pointwise | Linear, discontinuous

5 | Averaged | Linear, discontinuous

Table 5.5.1: Methods for data transfer

network are discussed in Chapter 6.

5.6 Tracking transients

The hyperbolic domains are typically needed where there are travelling waves or
shocks and so they have to move or expand to track these transients. Furthermore,

the frictional terms in the hyperbolic model will damp the transients so that after
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... original wave, o parabolic, - hyperbolic

Figure 5.5.4: The damping caused by repeated use of inconsistent transfer operators

... original wave, o parabolic, - hyperbolic
1 T T T T T

0.8- 1

0.6 1

0.4r 1
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Figure 5.5.5: Piecewise linear interpolation around parabolic data points
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Figure 5.5.6: A comparison of the different forms of interpolation - see Table 5.5.1

for the key.

some time the hyperbolic domains may decrease in size or disappear altogether.
It is possible that complicated geometries will arise as parabolic “holes” appear in
hyperbolic domains or hyperbolic domains merge. Rather than track the interfaces
explicitly it is simpler to examine each pipe at the end of a parabolic timestep and
decide whether it should switch status. The interfaces are then recalculated from
this data, a relatively easy process since the domain is one-dimensional. This will
automatically account for the creation or destruction of interfaces.

To carry out this process we need tests to determine when to switch a pipe’s
status. We consider first the switching of a pipe from parabolic to hyperbolic. The
parabolic domains do not contain enough information to determine whether they
should switch to hyperbolic. Instead, this must be deduced from adjacent hyperbolic
domains, which can be done in two ways.

We could try to detect transients as they strike an interface from a hyperbolic
domain. If one is detected then the parabolic step recommences from the beginning
with an enlarged hyperbolic domain (recall that a pipe is hyperbolic or parabolic

for an entire parabolic step and cannot change halfway through.) Suppose that at
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the interface we are enforcing a linear density boundary condition on the hyperbolic
domain. If a wave strikes the interface then a characteristic signature is made by
the flow as shown in Figure 5.6.2. This was produced by the left-moving pressure
wave in Figure 5.6.1 striking the interface at about £ = 5 seconds.

A drawback of this approach is that it is difficult to identify such events. We
might attempt to look for the rate of change of ¢ at the interface exceeding a certain
tolerance but this ad hoc indicator is difficult to relate to the difference between
hyperbolic and parabolic solutions.

A more satisfactory method which is easier to implement is to include a “safety
net” around a transient into which it can travel during one parabolic timestep. The
size of this safety net is determined by the maximum speed of a transient. The

method reduces to the following algorithm which is depicted in Figure 5.6.3:

Algorithm 5

1. Eztend each hyperbolic domain by a distance of At times the mazrimum wave

or shock speed

2.So0lve the hyperbolic and parabolic domains over one parabolic step

3. Examine each pipe to see if it can be returned to parabolic status

In practice we overestimate the transient speed to ensure that we capture fast
moving shocks.

This algorithm has the advantage of being dependent on the method for switching
from hyperbolic to parabolic and thus not requiring its own tolerance to be given.
A disadvantage is that the hyperbolic domains are extended whether or not it is
necessary, requiring extra computation. However, this will not be too great if the
parabolic timestep is quite small. For example, given pipes of length 10,000 metres

and a timestep of 20 seconds, the safety net is only one pipe in length. For larger
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Figure 5.6.1: A pressure wave striking a left hand interface
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Figure 5.6.2: The signature made by a wave striking an interface
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Figure 5.6.3: Algorithm 5

timesteps use can made of the frictional dissipation which will put a ceiling on the
distance that a disturbance can travel.

There are many more options when we wish to determine when to switch a pipe
from hyperbolic to parabolic status. Unlike switching from parabolic to hyperbolic
all of the information we need is contained within the hyperbolic domain. Many tests
to detect a transient in a pipe could be conceived such as examining the variance
of the flow, testing the derivatives of the data or using the asymptotic expansions
of Chapter 4. The best test is to compare the solutions calculated with the pipe
hyperbolic and with it parabolic. Clearly it is impractical to solve a network with
every possible size of hyperbolic domain. A simpler test is to solve each hyperbolic
pipe with the parabolic solver individually and compare with the hyperbolic solution.
This reduces to solving the parabolic momentum equation

1 P2 _ P2

5 g THETQIQI=0

for () on each pipe, using the pressures at the nodes as boundary conditions. The

error introduced by not switching the pipe to hyperbolic may then be estimated by
Q — Pyl
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x 10°

pressure (Pa)

time (s) 0

x (m)

Figure 5.6.4: The progress of a wave through a linear network. Note the initial
discontinuities in the (left hand) hyperbolic region caused by the mapping of the

data from parabolic to hyperbolic meshes.

where P, is the hyperbolic to parabolic projection operator of Section 5.5. If this
quantity falls below a prescribed tolerance the pipe is switched to parabolic status.
Figure 5.6.4 shows the expansion of a hyperbolic domain using the safety-net method

and its subsequent contraction after applying the above test.

5.7 Experimental comparisons of the methods

In this section we evaluate the interfaced methods of this chapter by applying them
to two representative test problems.

The test problems are on a “linear” network which for practical reasons is much
smaller than the NTS. Since at this stage we are interested in the relative merits of
the different methods and not the effectiveness of interfaced schemes as a whole the
position of the interface was kept fixed. In each case the network was initially in

a steady state and some disturbance at the left hand boundary caused a transient
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to move into the network at ¢ = 0. Two runs were made of each test, one with the
interface in a position where it was struck by the transient during the simulation
time, the other where it was out of reach. This latter situation will occur in practice
but it is interesting to examine the methods under more demanding conditions.
The first test was a simulation of a pipe-break. Initially the gas was flowing steadily
from right to left through the network. A pipe-break occurred and a rarefaction
wave travelled into the network, eventually appearing to reach a steady state as
friction forces began to dominate. The second test was a little more artificial in
nature but was designed to have some of the characteristics of a compressor starting
or of a valve closing. Again, the initial steady flow was from right to left but this
time the pressure was raised suddenly at the left hand boundary causing a shock to
travel into the network. The rise in pressure was of sufficient magnitude to reverse
the direction of the flow and induce a stagnation point. The precise parameters of
each test are given in Tables 5.7.1 and 5.7.2.

Figures 5.7.1 and 5.7.2 show sample results from the iterative method of Section
5.2. Each figure shows a 3D plot of the pressure in the parabolic and hyperbolic
regions against time and space and a 2D plot of the final pressure in the hyperbolic
region compared with the exact solution. Solutions with the interface at 10,000m
and 20,000m are shown. It is evident that if a shock is allowed to strike an interface
as in the first graphs from Figure 5.7.2 then the interface method performs very
badly, while if the interface is struck by a rarefaction wave such as in Figure 5.7.1
then the solution is not as affected. The importance of keeping shocks inside the

hyperbolic domains is clear.

5.7.1 Measuring accuracy

A question which was raised in Section 5.1 is: given an interfaced method which links
two different models what is the correct “exact” solution to compare the numerical

solution against? The best answer to this is probably to compare the numerical
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Figure 5.7.1: Results from the iterative method, test 1. Only the hyperbolic solution

is shown in the right hand figures.
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Figure 5.7.2: Results from the iterative method, test 2. Only the hyperbolic solution
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domain size 50,000 m

pipe diameter d 914 m

simulation time 40 s

initial pressure p /(1= 8)70 x 10° + 680 x 10° Pa

where § = z/50000

initial flow q -543.52 kg/m? /s
initial temperature S} 280 K

left boundary condition = mach # -1

right boundary condition pressure 80 x 10°Pa

temperature 280K

friction factor f 0.002
ratio of specific heats v 7/5
reduced gas constant R 414.37 J/K /kg

Table 5.7.1: Parameters for test 1

solution against a solution of the Euler equations since this is considered to be the
more accurate model.

A consequence of this is that a solution generated by an interfaced method can
never converge to the “exact” solution no matter how much the meshes are refined.
The errors will instead plateau as the error from the numerical method is overtaken
by the error from using an inconsistent model. The important questions are how
quickly does the method reach the plateau and what is this final error? For these
tests the “exact” solution was calculated by Roe’s method (see Chapter 3) on a
mesh of 10,000 points.

For each test the Ly and interface errors of the pressure, flow and temperature
fields were calculated as the mesh was refined. These variables were chosen as the
most easily measurable in practice and therefore the most important. The mesh was

refined in three different ways,
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domain size 50,000 m

pipe diameter d 914 m

simulation time 40 s

initial pressure p /(1= 8)70 x 10° + 680 x 10° Pa

where § = z/50000

initial flow q -543.52 kg/m?s
initial temperature S} 280 K
left boundary condition  pressure 80 x 10°Pa

temperature 291K
right boundary condition pressure 80 x 10°Pa,

temperature 280K

friction factor f 0.002
ratio of specific heats v 7/5
reduced gas constant R 414.37 J/K/Kg

Table 5.7.2: Parameters for test 2

e holding the parabolic mesh fixed and refining the hyperbolic mesh in space

and time,

e refining the hyperbolic mesh in space and time and the parabolic in time only
(the spatial parabolic mesh is determined by the NTS in BG’s codes and is

not as easy to refine)
e refining both meshes simultaneously in space and time.

The first set of tests was to compare the interface conditions for the iterative
method. The second examines the data transfer method (see Section 5.5) which
affects the noniterative method. Finally the best configurations of the iterative and

noniterative methods are compared for accuracy and efficiency.
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5.7.2 The iterative method of Section 5.2

In these tests we restricted ourselves to putting conditions on ¢ and 7" at the interface
rather than P and T since this gave the best convergence behaviour. We also used
the secant method of Section 5.2.5 to generate the interface values.

We compared the interface conditions

e Asymmetric

1_ .0 /2 o k
% =0 Qup~ Xico® _, (5.7.1)
At Az/2 4 0z
e pointwise
10 12 _ (0 4 gmy /9

At Az

where point ¢ is the nearest to the centre of the pipe and

e averaged

1/2
oh— b Qup— @+ )2

At Az

=0 (5.7.3)

where the averages are taken over the pipe.

5.7.3 Results

Figures 5.7.3 to 5.7.5 compare the relative error from the interface conditions (5.7.1)
(asymmetric), (5.7.2) (pointwise) and (5.7.3) (averaged) as dz is refined while Az =
10000m and At = 20s. The results from test problem 2 with the interface at 10,000
m were rendered meaningless by the presence of a shock near the interface so they
are not presented.

As expected, the error reaches a plateau as the effect of the parabolic domain
starts to dominate. The errors from the ‘centred’ interface conditions (5.7.2) (point-
wise) and (5.7.3) (averaged) are too close to determine a winner. However, the

asymmetric condition (5.7.1) is clearly superior in Figures 5.7.4 and 5.7.5. This is
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Figure 5.7.3: Interface conditions compared as dz is refined with the interface at

10,000m, test 1.

surprising at first since the other conditions should be an order of accuracy better.
A likely explanation is that the centred conditions have stencils which lie in the
transient, even when the interface is at 20,000 m, while the asymmetric condition
takes its data from a smooth part of the solution. It is likely that the superiority
of the centred schemes when the interface is at 10,000 m will be repeated when the

interface is well away from the transient.

5.7.4 The noniterative method of Section 5.4.1

The noniterative method will be influenced by the method of data transfer used
to map the solution from the parabolic mesh to the hyperbolic mesh. Figure 5.7.6

shows a comparison between
1. Mapping P, T, @ from hyperbolic to parabolic pointwise (equation (5.5.1)),

2. Mapping P, T as averages in each node and () as an average in each pipe

(equation (5.5.3)),
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Figure 5.7.4: Interface conditions compared as dz is refined with the interface at

20,000m, test 1.
3. Mapping P, T pointwise and () as an average,
4. Mapping P, T as averages and () pointwise.

Only the results from test 1 with the interface at 20,000 m are presented since the
other tests gave the same conclusion: mapping the nodal data (P and T') pointwise is
superior to averaging. When the same experiment is tried but without the interface
node being updated, that is it retains the values calculated by the parabolic solver,
all four variants are identical. This implies that the inferior accuracy of the averaged

technique is due to only averaging data in half a pipe at the interface node.

5.7.5 Comparison of the methods

Finally, we compare the best configurations of the iterative and noniterative methods
for accuracy and computational expense. For the iterative method, we choose the
asymmetric interface condition and for the noniterative method choose option 3, as

offering the best performances.

112



Chapter 5. Interfaced methods

S ow S
X X X X X
S-15 Gl .
£ £
5 514
° @ *
9 - « * 3—1.6 N *
g * g
= X =-1.8 x
3 _2 ¥
15 2 25 3 35 15 2 25 3 35
log (dx) log (dx)
°© ©° o g
« X X X B
£ o5 0 pointwise i.c.
£
5 x averaged i.c.
© *
N % * asymmetric i.c.
5 3 *
° *
*
1.5 2 25 3 3.5
log (dx)

Figure 5.7.5: Interface conditions compared as dz is refined with the interface at

20,000m, test 2.

Figure 5.7.7 is an error plot for both methods with the three mesh refinement
strategies described in Section 5.7.1. The left hand plot is of error against hyperbolic
mesh size and it shows that the iterative scheme is superior for all three refinement
strategies. It is clear from the improvement as the parabolic mesh is refined that
the error in the parabolic solution has a much greater effect on the noniterative
scheme, as would be expected. However, the important question is whether the
superior accuracy of the iterative scheme outweighs its additional computational
cost. The right-hand plot showing error against floating-point operations confirms
that it does. The noniterative method can compete if the parabolic mesh is refined
in space and time but this is impractical with current BG software since the spatial
mesh is determined by the geometry of the network.

For a rough idea of the execution times see the plot of time against flops in
Figure 5.7.8.

These results are supported by the other test problem. As well as being less ac-

curate a disadvantage of the noniterative method is that since the parabolic method
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Figure 5.7.6: A comparison of methods to transfer data from the hyperbolic mesh
to the parabolic mesh for the noniterative method as dz is refined with the interface

at 20,000m, test 1.

is used on the entire network, disturbances are instantly transmitted everywhere

which is unphysical.

5.8 Summary
e Interfaced methods offer a ‘best of both worlds’ approach.
e An iterative and a noniterative method have been described.

e The iterative method, although more complicated to implement, offers the

most efficient and accurate solution.
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Branched networks

So far we have only considered the simulation of “linear” networks, that is, a single
pipeline. In practice, we wish to model a complicated network of interconnecting
pipes together with machines such as valves and compressors which impose con-
straints on the flow. In this chapter we examine the extension of the previous
results to branched networks.

We begin by deriving natural extensions of the parabolic and hyperbolic nu-
merical schemes and then discuss the additional problems for interfaced schemes in

Section 6.3.

6.1 The parabolic domain

In this section we first state the the appropriate boundary conditions applicable at
junctions of several pipes and then show how they may be implemented numerically.
The Euler equations, from which the parabolic equations are derived, are based
on the principle of conservation of mass, momentum and energy and we calculate
the correct junction conditions from the same considerations. A typical junction
is shown in Figure 6.1.1, the arrows represent the direction in which we measure
positive flows, and not necessarily the direction of the flow. Conservation of mass

at node 2 requires that mass fluxes at the ends of the associated pipes balance, that
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E_ Node 1

i Ape1

i Pipe3

il Node 4 Node 2

Pipe2
Node 3

Figure 6.1.1: A typical junction

is,
Aligh = Alagla + Alsgls, (6.1.1)

where g/, is the flow per unit area in pipe m at the end of the pipe connected to
node 2 and A|,, are the pipe cross section areas. We adopt the unusual notation
X | for quantity X in pipe m since the equations become more complicated in later
sections.

Conservation of energy follows in a similar manner, with ¢ replaced by the energy
flux. Initially we consider the isothermal parabolic equations for which energy is not
conserved and so this equation is not needed until Section 6.2.

In general, momentum will not be conserved due to the force exerted on the gas
by the junction. This effect will be dependent on the shape of the junction, for
example, we might expect a T-junction to impede the flow more than a fork. One
way to model the momentum change is to use an empirical law relating the pressure
drops across different types of junction. The simpler approach followed here is to
model the momentum loss by adjusting the friction term.

At the junction itself we may simply equate pressures or the dynamic head

p + ¢*/(2p). Goldwater and Fincham [GF81] note that in the gas transmission
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Figure 6.1.2: The mesh for the junction in Figure 6.1.1

industry the ¢%/(2p) term is negligible compared to the very high pressures, typically
p =~ 70 x 10° Pa, ¢ ~ 500kg/s/m? p ~ 50kg/m3, and the conditions are nearly
identical. Both conditions are only approximate since the momentum change is
highly dependent on the junction geometry, so we choose to equate pressures since

this is simpler to implement. In place of conservation of momentum we have

Incorporating boundary conditions (6.1.1) and (6.1.2) into the parabolic numerical
scheme (4.2.1) is facilitated by the staggered mesh which is shown in Figure 6.1.2.
The pressure at node 2, P,, is common to all 3 pipes and so condition (6.1.2) is
implemented automatically. It was pointed out in Section 5.2 that the staggered
scheme (4.2.1) for the parabolic equations can be seen as a finite volume scheme

where the mass associated with a node is given by

P
AAx—.
“RT
Generalising this to a node connected to several pipes gives the mass associated with

node 2 as
3 A|mAIE|m P2

Z 2 RT

m=1
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and the numerical equivalent of condition (6.1.1) is

> A|mAx|m (P2n+1 _P2n)

Z 2 RT

m=1

+ AL (A, Q" |y + AQ™ |5 — ALQ™|) = 0.
(6.1.3)
General networks may be described by a connectivity matrix C which defines

how pipes and nodes are connected. The entries of C' are

(

—1 if the left-hand end of pipe m connects to node [

Cmi = § +1 if the right-hand end of pipe m connects to node [

0 otherwise
\

and we measure z-increasing from left to right. For example, the connectivity matrix

for the simple network in Figure 6.1.1 is

C=10 -110
0 -1 01
Extending equation (6.1.3) to a general network is straightforward once account of

the pipe directions is taken. For node [ we have

Al Az, (PP — PP n
3 | 5 m (P =T l)—AthmlA|mQ 0, = 0. (6.1.4)
Cmﬁéo m

Note that for a linear network of equal area pipes with connectivity matrix

-1 1 0 0
0 -1 1 0

C= ,
0 0 -1 1

equation (6.1.4) collapses to the discretisation for the mass equation (4.2.1). It
will be shown in Section 6.2 that this consistency between boundary conditions at
junctions and the numerical method is harder to achieve for the hyperbolic equations.

The discretisation of the momentum equation (4.0.2) remains unchanged as

1 P2 n+l P2 n+1
5( )R At( )L + ,U«RTQn+1|m|Qn+1|m| =0
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where R and L are chosen such that ¢,z = 1 and ¢,,,;, = —1.

In Figures 6.1.3 to 6.1.5 we show an example solution from this scheme. The
network is a pipeline of six 10,000m pipes, with an off-take half way along. The
off-take consists of three 1,000m pipes. All of the pipes are circular of area 0.5m?
and the friction factor is f = 0.002. Initially, the gas is flowing steadily from a
pressure of 80 x 10° Pa at the left to 75 x 10° Pa at the right. At time ¢ = 0 the
flow rate at the off-take is raised linearly from 0 to 300 kg/s/m? over a period of
5 minutes. Figures 6.1.3 and 6.1.4 show the initial and final conditions and Figure

6.1.5 plots pressures and flows against time at selected points in the network.

6.1.1 Including temperature variation in the parabolic do-
main

Temperature variation in the parabolic domain can be accounted for in the same

way as in Section 4.3. The discretised mass equation (6.1.4) becomes

>

Cmi#0

Alm Az <Pln+1 P

2R Tn-l—l - T_ln> - Atz leA|an+0|m =0
l m

and the momentum equation changes as before from (4.2.2) to (4.3.2). The temper-
ature at the new time level is unknown and must be calculated by using an energy
equation such as the entropy equation (2.3.3) and extending the method of Section
4.3.2. Within each pipe the entropy equation (4.3.3) is discretised as

n+1

n
Sy~ — Sy

At

st — gn
= —c,,ﬂfu"|mi”m| X 4+ BY, (6.1.5)

where nodes X and Y are chosen so that the flow Q"|,, is from X to Y and

Uy = .
Ox + Oy
Since each node may be associated with several pipes the new value of the entropy

at a node as calculated by formula (6.1.5) might be undefined or multi-valued. The

former occurs when the node is a stagnation point and all flows are away from it.
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Figure 6.1.3: The initial conditions on the network, pressures in Pa, flows in kg/s/m?
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In this case we calculate the entropy by solving the ODE
ST — st

= B"|,.
At m

In the latter case when several pipes are flowing into a node an average of the
contributions from each pipe, weighted according to the magnitude of its flow, is
assigned to the node. The need for these approximations is a drawback of the
scheme, but the only correct way to simulate junctions and stagnation points is to
discretise the energy equation in conservation form which would prohibit the use of
an explicit scheme except with impractically small timesteps. Since in the parabolic

domains the gas is almost isothermal the error incurred should be acceptable.

6.2 The hyperbolic domain

In this section we consider a junction between pipes all of which are hyperbolic.
We begin by using characteristic directions to calculate the number of boundary
conditions necessary at a junction for a well-posed problem. In Section 3.4 it was
stated that each boundary can be designated as an inflow or an outflow depending
on whether the flow is away from or towards it. In the networks in which we are
interested all flows are subsonic and so an inflow boundary always has one outgoing
characteristic, two incoming characteristics and requires two boundary conditions,
for example a specified pressure and temperature. Similarly, an outflow boundary
has two outgoing characteristics, one incoming characteristic and requires only a
single boundary condition.

For a general junction of m; inflow pipes and ms outflow pipes we need therefore
a total of 2my + my boundary conditions.

In the previous section 6.1 we stated that the boundary conditions at a junction

may be derived from conservation of mass and energy and a model for momentum
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loss. Conservation of mass at the /th node imposes the condition

m1+m2

> AlmCmiglm = 0. (6.2.1)

m=1

In a similar way conservation of energy gives the second boundary condition

m1-+ms Q|m
> AlmCm (W (E|m +p|m)> = 0. (6.2.2)
m=1 m

Momentum is not conserved at the junction and this effect must be modelled by
adjusting the friction factors (see Section 6.1). Instead we have the m; + my — 1

equations
p|m = p|m+1 m < my +mg — 1. (6.2.3)

To provide the remaining 2m; +my — (1 +14+my +mg — 1) = m; — 1 equations
note that we have no information about the junction to distinguish between the m;
inflow pipes (recall that an inflow pipe has gas flowing out of the junction), and so
we assume a perfect mixing of the gas in the junction and equate the temperatures
at the ends of the inflow pipes. Due to the equality of pressures (6.2.3) this is

equivalent to equating entropies or densities. This latter condition
Plm = Plma1 m<m; —1 (6.2.4)

(after ordering the pipes appropriately), is the easiest to apply in practice. A number
of alternative conditions taking into account the areas of the pipes are possible but
it should be stressed that none of these conditions is “correct” since we are using
a one-dimensional model to simulate a three dimensional phenomenon. Condition
(6.2.4) simply states that we do not know enough about the junction to distinguish
between the inflow pipes.

Note that ¢uq|m > 0 implies that the pipe is outflow and ¢;q|m < 0 implies
that it is inflow. We must have at least one inflow pipe for the number of boundary
conditions to be correct and to make physical sense. Fortunately, equation (6.2.1)
ensures that there is always at least one inflow and one outflow pipe (except in the

trivial case of ¢|,, =0 Vm.)
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6.2.1 Implementing the boundary conditions

The previous section shows that we have the correct number of boundary conditions
to solve the junction problem. However, as was noted in Chapter 3, numerical
methods often require more boundary conditions than the underlying equations.
These additional numerical boundary conditions may be supplied by several means,
such as extrapolation, one-sided differences or characteristic tracing.

A desirable property of a numerical method for a junction is that when it is
applied to a junction of only two pipes of equal areas, the numerical boundary con-
ditions collapse to the method used in the interior of each pipe. This ensures that
where pipes are connected into pipelines numerical conservation will be respected be-
tween the pipes and shocks will be correctly positioned. In contrast to the parabolic
numerical scheme it is difficult to derive a treatment for junctions in the hyperbolic
scheme which is consistent with the underlying scheme in this way.

Figure 6.2.1 illustrates the potential danger of using an incompatible scheme
at the junction. The figure shows two pipes connected at a junction denoted by
the dotted line. Isentropic characteristics (see Chapter 3) are used to implement
the boundary conditions of the previous section while the second-order Roe scheme
(3.3.14) is used to calculate the flow in each pipe. In effect Roe’s scheme is used
everywhere except at a single point which is solved by the method of characteristics.
Initially the gas is at rest with a sharp discontinuity in the pressure in the left-hand
pipe. This resolves itself into a leftward moving rarefaction wave and a rightward
moving shock and contact discontinuity. The shock passes through the junction
almost unaffected. It is only when the contact discontinuity strikes that the method
fails. The oscillations become so great that the scheme fails a few timesteps on from
the figure, due to the CFL number exceeding unity.

If the method of characteristics (MOC) is used as the numerical scheme in the in-
terior of the pipes then the junction boundary conditions can easily be implemented

in a consistent way. Fox [Fox89] shows how to use characteristics to implement
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Figure 6.2.1: Instability caused by the use of an inconsistent scheme at a junction.
The crosses represent the solution calculated by Roe’s scheme everywhere while the

circles represent the solution obtained by using MOC at the junction.

boundary conditions for junctions in river networks, which is a very similar prob-
lem.

Unfortunately, as was stated in Chapter 3, we should not use MOC if we wish to
capture shocks since it is not conservative for the Euler equations. Godunov-type
schemes were developed as ways of using characteristic information in a conservative
scheme and so it is natural to turn to these as a way of using the characteristics
to implement the boundary conditions. In the next section we show how Roe’s
method, and the cell-edge boundary conditions of Section 3.4.2 can be generalised

to junctions.
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Figure 6.2.2: Arrangement of the computational cells at the junction
6.2.2 Numerical boundary conditions for junctions

Section 3.4.2 described a natural method of applying boundary conditions to Roe’s
method by enforcing the boundary conditions on the cell-edges. In this section we
extend this method to the boundary conditions at junctions. Consider a junction
of M pipes. The computational cells are arranged as in Figure 6.2.2 so that the
junction lies at the outside edges of the extreme cells in the incident pipes and in
general the flow variables will be discontinuous at this point. We must therefore
solve for 3M cell-edge quantities, 3 in each pipe. Repeating the method of Section
3.4.2, we linearise the Euler equations in the cells next to the junction. The details
of the linearisation, which will in general be different in each pipe are deferred until
later in this section.

The basic algorithm is the same as before but the notation is more complicated.

Algorithm 6

e Calculate the eigenvalues and vectors for the M matrices Aln,
e Define the cell-edge states Ug|m = a1 |mT1|m + 02|mTa|m + @3|ms|m,

e Solve for the 3M coefficients o |m by solving the junction boundary conditions

(6.2.1) to (6.2.4),

o Use the aj|y to calculate the jumps 0;|m and update the boundary cells using

equation (3.8.14).
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Calculating the o |m, requires Newton iteration since the boundary conditions are
nonlinear. Initial guesses for o, are provided by §;|m. At each iteration the new
approximations to the edge states Ug|m = ¥}_, @j|mIj|m are calculated, followed
by the pressures pgl,, and energy fluxes F|,, := ((E + p)q/p)e|m-

Denoting the residual of the equations for a;|, by the 3M-vector g, the asso-
ciated Jacobian J and the unknowns x = (a1, aa|1, @31, @1le, @al2, @3le,...), an

algorithm to set up the Jacobian and residual is:

Algorithm 7

eSet inflowFlag=0
efor m=1:M

—if CmAi|m <00 gam-1)11 = @ |m—0Bi|m houtgoing characteristic
—if cpuAslm <00 g3m—1)4+1 = @3|m—P3|m houtgoing characteristic
—if Cmdolm <0t gam-1)12 = Q2|m—B2|m houtgoing characteristic
—if ¢pyAe|m >0 then

*¥if inflowFlag= 0: Jconservation of energy

93(m—1)42 = 2omy F|m’

xif inflowFlag# 0: Yequal densities

g3(m—1)+2 = PE|m - pE|inflowFlag
—set inflowFlag=m
—endif
—if m=1: @3pm-1)43 = 93 = Yy qE|m hconservation of mass

—if m#1:  G3m-1)4+3 = PE|m — PE|m—1 %equal pressures

eendfor
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The first two if statements in the for-loop are mutually exclusive since the flow

18 subsonic.

The entries of J are calculated from equation (3.4.1) and the Newton iteration
Xni1 = X5, — J7'g(x,) performed in the usual way.

Including the trivial equations ¢;|m = B;|m in the system to be solved consider-
ably simplifies the code since we always have 3M equations to solve irrespective of
the number of inflow and outflow pipes and their orientations while adding little to
the computational work, since M is almost always three or less. The Jacobian J is
a function of the flow speeds As|,, at the junction. In some situations |J| — 0 as
A2lm — 0 and the Newton iteration will fail. This can be remedied by imposing a
lower limit on the absolute value of X[, passed to J at a cost of slightly reducing

the convergence rate.

The linearisation at the junction

We now show that the correct choice of linearisation at a junction of two equal area
pipes leads to an implementation of the boundary conditions consistent with the
underlying scheme, Roe’s method. Consider a junction of two pipes and let pipe
1 be an outflow pipe with rightmost cell z;|; adjacent to the leftmost cell zg|s of
pipe 2, an inflow pipe. Adjacent to the interface in cells z|;, zo|2 we use the same
linearisation A(Uj|{, Up|e) in both pipes so that the eigenvectors r; and eigenvalues

A; are identical. Constructing the edge states using Algorithm 6 gives
Ug|i = &ir1 + Bofira + B3ir3
Ugla = Bilor1 + €org + &513

where the 3 unknown &; are chosen such that

gl = el conservation of mass
PEl1 = DPE|2 continuity of pressure
CI|1 i q|2 .
W(Eh +pl)|E = W(Eb +plo)|g  conservation of energy.
1 2
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Using the equation of state E = ¢?/2p+p/(v—1) and simplifying gives an equation

relating pg|; to pg|e for given pg and ¢g

YPE
(pe|1 — pEl2) (’Y 1PE|1PE|2+Q?E(PE|1 +PE|2)> = 0.

This equation is has two solutions, pr|1 = pgl2, and a nonphysical one where the
densities have opposite signs. We assume that the Newton iteration converges to
the former solution since the starting values of £;|,, are given by the states in the
end cells.

Thus, solving the junction boundary conditions will generate identical edge con-
ditions at the boundary of both pipes:

Ugh =Ugla= > Bilorj+ > Bihr;.
A;<0 A;>0

The update to cell 0 in pipe 2 is then found from equation (3.3.14),

At
)\_1/2,j>0 )‘+1/2,jS0
(6.2.5)
where
Bila = Bili Xiz1j2; =0
6i_1/27j =

0 )\i—1/2,j < 0.
Comparing this with Uj*!|, as calculated when x|, and x|, are treated as adjacent
internal cells in Roe’s method, we see that the formulae are formally identical. The

only difference is that for Roe’s method,

5—1/2,]' = ﬂj|2 - ﬂj|1 Vj-

Since the d_,/5; are not used in equation (6.2.5) when A_;/,; < 0 this gives an

identical value. Clearly this is only true if the eigenvalues A and eigenvectors r are
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calculated by Roe’s linearisation (3.3.12) which is based on the averages

\/PJ|1UJ|1 + 1/ p1|ou1 2 (6.2.6)

U=
psl+ \/P1|2
_ \/PJ|1hJ|1 + \/P1|2h1|2
h = (6.2.7)
psli+ \/P1|2
a® = (v —1)(h — u*/2). (6.2.8)

To summarise, if we use Roe’s linearisation then this method of implementing
the boundary conditions is consistent with Roe’s method when M = 2. The only
change required for a junction of more than two pipes is to the linearisation.

Generalising the linearisation to M > 2 may be done in many ways by choosing

different averages %, h. An obvious choice is

= Plmtilm = emt Chizm chiy/ plrul
lecwzl \/P|k

_ S/ ol H

Bl = 5L Pl (6.2.10)

S /Pl

The sign of ¢,,@|, determines whether pipe m is an inflow or an outflow at

(6.2.9)

node [ and therefore the number and type of boundary conditions. It is a numerical
approximation and so it does not necessarily reflect the true solution. For example,
if we have a junction of M > 2 pipes of identical speeds and densities (that is,

Cmir/ P|mt|m are the same) then, using equation (6.2.9),

il = Cmi\/ Plmtlm — X hm Ckl\/mubc
S el
_ (2 = M)cmuy/ plmtt|m
M/ plm

?

that is, all the ¢, @l are the same and all of the pipes are inflows or all are outflows.

As was noted in Section 6.2, this results in an ill-posed problem. This can be
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remedied by using a different generalised Roe-average such as

Plmt|m — 3745 Z%ﬁm criy/ Pleulk

|m

Plm + 577 ke \/ Pl
Al = Plmtlm + 5757 L v/ Pl H |k
=
Pl + 5757 ke /Pl

which gives & = 0, a stagnation point, in the same situation.

A further possibility is to choose

il = Plmt|m — A_f[m_‘li Z%&m Ckl\/ﬂ|ku|k
=

%lec\; \/P|k
P|mu|m + ﬁ lec\;fém \/P|kH|k

%ZIZCMZI \/P|k

which not only has the correct form when M = 2 but also has the property

(6.2.11)

Bl =

Z szﬂ|m = (Z Cml P|mu|m T M1 Z Z Ckl\/p|ku|k) / (M Z \/P|k>
m=1 m=1 m=1k#m k=1
M 1 M-1 M 9 M
= (Z Cml p|mu|m - M—1 Z Z Cml p|mu|m> / (M Z V p|k>
m=1 k=1 m=1 k=1

=0

guaranteeing that not all ¢, @/, are of the same sign, and there is always one inflow
and one outflow pipe.

The choice of linearisation makes little difference to the solution itself. Figures
6.2.3 and 6.2.4 shows two example solutions for a three-pipe junction calculated with
linearisation (6.2.11).

It should be emphasised that these linearisations only give conservation in the
M = 2 case. When M > 2 one-dimensional conservation of momentum is no longer
appropriate and there may be a significant momentum transfer from the gas to the
pipes. The linearisation will not exactly conserve mass and energy either, though
the boundary conditions ensure that they will be conserved in the limit as the mesh

is refined.
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Figure 6.2.3: A shock striking a three pipe junction. Each pipe has 40 mesh points,

and the right hand figures show the solution in the input pipe juxtaposed with that

in one of the output pipes.
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Figure 6.2.4: A rarefaction wave caused by a pipe-break striking a three pipe junc-

tion. Each pipe has 40 mesh points, and the right hand figures show the solution in

the input pipe juxtaposed with that in one of the output pipes.
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Second-order corrections

The previous section demonstrated a method of implementing the junction boundary
conditions which collapses to Roe’s scheme when the junction is of two equal pipes.
However, Roe’s scheme is only first-order accurate. Section 3.3.1 showed how to
improve the order of accuracy by using flux limiters. To extend the second-order
method to the the boundary requires extrapolation to provide the “missing” waves
(see Section 3.4.2). However, if this is done at a junction then we will lose the
consistency with the second-order Roe scheme. To maintain consistency requires
that the interaction between the pipes is used to generate the “missing” waves at
the boundary. It is not difficult to formulate an averaging procedure which does
this, taking due account of the orientations of the pipes and directions of flows, but
it does make the coding appreciably more complicated. In practice as Figure 6.2.3
shows, using extrapolation to provide the missing waves works well and the gain in

simplicity outweighs the loss of consistency.

6.3 The interfaced methods

The previous two sections describe the additional considerations when using the
parabolic and hyperbolic models on branched networks. The interfaced methods of
Chapter 5 carry across to branched networks without requiring much modification.

The areas which do require attention are described here.

6.3.1 Interfaces at junctions

An interface in a linear network always separates a hyperbolic domain from a
parabolic one. In a branched network the possibility exists of an interface between
several hyperbolic and parabolic domains.

For the noniterative method of Section 5.4.1 this does not present a problem.

The network is first solved by the parabolic solver, using the numerical scheme
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(6.1.4). The hyperbolic domains are then solved pipe by pipe using the method of
Section 6.2. If a hyperbolic pipe joins to a node which is entirely hyperbolic then the
boundary conditions are implemented as in Section 6.2. If one or more connecting
pipes is parabolic then the boundary conditions are supplied by interpolation from
the parabolic domain as described in Section 5.4.1.

An outline for an algorithm to apply the noniterative method to a branched

network is

Algorithm 8

efor n=1 to numberParabolicSteps

—[prtl Qnt! T"Hl=parabolic(P",Q", T", time™)
—for k=1:numberHyperbolicSteps
xfor node=1 to numberNodes
-if allPipesHyper(node)=TRUE then
-calcNodalWavesl 7% according to Section 6.2
-elseif allPipesPara(node)=FALSE then

-calcNodalWaves2 % according to Section 5.4.1,

using o'l etc as a boundary condition
-else %do nothing
-Endif
«Endfor
*hPipes:=getIndices(isHyper(n, :)=TRUE)
xfor pipechPipes
[0¥* pipes - - - |=doOneHyperStep (o |pipe, . . . » nodalWaves)

xEndfor
—Endfor
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eEndfor

On the other hand the iterative method of Section 5.2 does require special treat-
ment at such junctions. Rather than devise generalised interface conditions for
mixed nodes (which is not difficult - the interface condition can be generalised in
the same way as equation (6.1.4)) it is perhaps simpler to disallow them. If an
interface is moved to such a node then the hyperbolic domains are enlarged slightly

to move the interface to a two-pipe node.

6.3.2 Tracking transients

Section 5.6 describes two ways of enlarging the hyperbolic domains. The first at-
tempts to detect transients as they strike interfaces. The second method, which
was preferred, is to extend the hyperbolic domain at every parabolic step and then
retract it where it is unnecessary. The former method may be applied to branched
networks almost unchanged, though the code is more complicated. The second

method may be easily implemented by a recursive code such as:

Algorithm 9
Given an array isHyper01d (i)=True if pipe ¢ is hyperbolic, for each hyperbolic pipe
m at the old parabolic time level call:
%Extend to the left
isHyper=extendHyper (m, AtXx sound speed, -1, isHyperOld, isHyper01ld)
%Extend to the right

isHyper=extendHyper (m, AtX sound speed, +1, isHyperOld, isHyper01ld)

where the function extendHyper() s
function isHyper=extendHyper(pipe, distance, direction, isHyper,
isHyper01d)

eif distance < 0 then return % Nothing to do
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eif direction=-1 then node=leftNode(pipe)
eif direction=+1 then node=rightNode(pipe)
epipes:= pipesConnectedTo(node)

efor i€pipes

—if (i#pipe & isHyper01d(i)=FALSE) then % extend domain

*xisHyper (i) :=TRUE
xisHyper=extendHyper (i, distance-pipeLength(i),

-connectivityMx(i,node), isHyper, isHyper01ld)

—Endif
eEndfor
ereturn

eend

This function requires a starting pipe which is hyperbolic at the old time level
(that is isHyperbolic01ld(pipe)=TRUE), and a direction and distance to spread. It
expands through the network, branching as necessary, and calculates the required

hyperbolic pipes at the new time level.

6.3.3 Data transfer between meshes

Transferring data between the meshes in branched networks is in most ways the same
as for linear networks. There is a minor difference in the transfer from parabolic
to hyperbolic meshes as it is not physically realistic to continuously interpolate the
flow between adjacent pipes at a junction. At a junction the flow is not continuous,
but rather sums to zero. Instead, the van Leer style interpolation (5.5.5) can be

used for the flow, with the slope limited with respect to all adjacent pipes. It is
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important to take correct account of the pipe orientation since the flow has an
associated direction, unlike pressure and temperature. From the results of chapter

5 the recommended strategy is,

e Linearly interpolate between nodes to get the hyperbolic pressure and tem-

perature,
e Use van Leer style interpolation within pipes to get the hyperbolic flow,
e Average the flow in a pipe to get the parabolic flow,

e Take the parabolic temperature and pressure pointwise from the hyperbolic

solution at the nodes.

6.3.4 Results

To conclude this chapter we present some illustrative results calculated by the iter-
ative method of Section 5.4.1.

The test problem is similar to that of Section 6.1, a pipeline consisting of six
10,000m pipes and an offtake, this time two 5,000m pipes. Initially the network is
at steady state, with a pressure of 80 x 10°Pa at the left node to 75 x 10°Pa at
the right node and zero flow at the off-take. At ¢ = 0 a demand of 1200kg/m?/s is
suddenly imposed at the off-take and Figure 6.3.1 shows how the rarefaction wave
travels along the network.

Each row is a snapshot in time at ¢ = 1s, 11s ... showing the pressure (Pa) on
the left and the flow (kg/m?/s) on the right. The parabolic pressure is shown at
the nodes, while the parabolic flow is shown in the pipes. The hyperbolic solution
is represented by broader lines both for pressure and flow.

The hyperbolic domain propagates down the off-take and spreads left and right
at the T-junction. Eventually the disturbance at the off-take decays to such an

extent that the pipe nearest the off-take reverts to parabolic.
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Notice that the hyperbolic region does not propagate symmetrically away from
the T-junction, but instead follows the stagnation point, where the gas velocity is
low. This confirms the findings of Chapter 4 which suggested that the parabolic

model is not suitable for small gas velocities.
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Figure 6.3.1: A solution calculated by the noniterative method of Section 5.4.1.

Each row is a snapshot at 1, 11, 21 etc seconds, the left hand figure shows pressure

(Pa), the right hand figure shows flow (kg/m?/s).
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Conclusions and practical

considerations

The aim of this thesis was to investigate the feasibility of combining two different
numerical methods on a single gas network. Two practical algorithms have been
proposed which fulfill this objective.

The hyperbolic solver for branched networks is simple to apply on a pipe-by-pipe
basis, there is no need for an algorithm to identify linear sections of the network
which should be solved as single pipelines. The particular treatment of the bound-
aries ensures that whenever there is a junction of only two pipes, the junction is
treated in an identical fashion to an internal point in a pipe.

It is important to BG that any new algorithm is compatible with their existing
software. Both algorithms can make use of FALCON (the BG code) as the parabolic
solver with little modification. Although the network is theoretically split into hy-
perbolic and parabolic domains, in practice it is simpler to calculate the parabolic
solution on the entire network to avoid the complication of restructuring the connec-
tivity matrix. The noniterative method does this already; the iterative method will
simply discard the parabolic solution in pipes which it has labelled as hyperbolic.

The results of Chapter 5 suggested that the iterative solver is more accurate and
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efficient than the noniterative solver. Furthermore, the noniterative solver suffers
from instantaneous transmission of transients to all parts of the network, which
not only is unphysical, but also disturbs the parabolic domains which the transient
has not yet reached and results in the hyperbolic domain expanding faster than is
necessary.

Some of the remaining questions include, how to include real gas effects (see
Section 2.4.1) and what is the optimum ratio of the hyperbolic and parabolic mesh
sizes.

The work of this thesis has other applications. One of the most suitable is the
solution of river networks, which are modelled by a similar system of equations and

have a similar geometry.
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Notation
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Symbol Variable Typical Value Units
v ratio of specific heats 7/5

j jump in jth wave between cells

At time-step, parabolic region s

Ax spatial mesh size, parabolic region m

ot time-step, hyperbolic region s

ox spatial mesh size, hyperbolic region m

€ pipe roughness m

0 parameter for implicit numerical method

A mesh ratio .1-10

Aj jth eigenvalue
) frictional constant 2f/D ~0.004 m™!
7 viscosity Pa s
i Joule-Thompson coefficient 0 (ideal) K/Pa
p density, hyperbolic region 50 kg/m3
0 density, parabolic region 50 kg/m3
T frictional wall stress N/m?
Q heat transfer term W/m
w relaxation coefficient in iteration
H projection operator from the p. to h. mesh
P projection operator from the h. to p. mesh
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Appendix

Notation

Symbol Variable Typical Value Units

A linearised matrix from Euler equations

A pipe area 1.1 m?

C pipe circumference 3.6 m

C connectivity matrix

D pipe diameter 1.2 m

E energy density 1.75 x 107 J/m?

F energy flux (E+p)u

J Jacobian matrix

M Mach number 0.05

M mass kg

M number of pipes at a junction

MW molecular weight 17 kg/kmol

P pressure, parabolic region 70 x 10° Pa

Pr Prandtl number

Q flow/unit area, parabolic region 500 kg/s/m?

R pipe radius 0.6 m

R reduced gas constant 490 J/kg/K

R* gas constant 8314 J/kmol/K

Re Reynolds number 107

St Stanton number 0.00125

T temperature 280 K
volume m3

Xg cell-edge value of X
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Appendix Notation
Symbol Variable Typical Value Units
a speed of sound 340 m/s
a roe-averaged sound speed
a,b EOS coefficients
c specific heat capacity of soil 1840 J/kg/K
Co specific heat capacity at constant V 1220 J/kg/K
Cij entries in C +1,0
e specific internal energy J/kg
f friction factor 0.002
h pipe depth 1 m
h specific enthalpy (E+p)/p
h roe-averaged enthalpy
k soil conductivity 0.52 J/s/m/K
m number of h. time-steps in each p. step 600
m pipe number
n number of moles
P pressure, hyperbolic region 70 x 10° Pa
q flow/unit area, hyperbolic region 500 kg/s/m?
r; jth eigenvector
s specific entropy J/kg/K
t time s
u gas speed m/s
u conserved quantities [p,q, E]
] roe-averaged velocity
w Riemann similarity solution
W Approximate Riemann similarity solution
z compressibility constant
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